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a b s t r a c t

In this paper, our previous ghost-cell compressible immersed boundary method (Luo et al., 2016) is fur-
ther implemented to solve heat transfer problems in flows with complex solid geometries. Arbitrary 2D-
immersed boundaries are presented by many micro line segments. Each line segment is identified by two
vertices. An extension to 3D situation is straightforward, in which arbitrary surfaces can be divided into
many triangular surface elements. Two different interpolation schemes for the mirror points, namely
inverse distance weighting and bilinear interpolations, are compared. An accurate capture of the sec-
ondary vortex street far behind an elliptical cylinder indicates a successful combination of current IB
method with the fluid solver. Then, forced convective flow over an inclined non-circle cylinder is used
to further validate present method. Finally, Mach > 0.3 cases are studied to demonstrate the essentiality
of taking compressibility into consideration in high-speed thermal flow problems.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The CFD (computational fluid dynamics) method has been a
well-developed academic discipline and gradually become an
effective instrument for engineering problems. When it comes to
flows over complex geometries, in a traditional way, a body-
fitted mesh is generated to describe the boundary of the immersed
body. Under this situation, the implementation of boundary condi-
tions is simple and straightforward because grid line and body sur-
face align with each other. However, for arbitrary complex
geometries, the generation process of a high quality body-
conformal grid and its re-meshing process can be very resource-
consuming.

In contrast, a totally different idea had been introduced by
Peskin [2] in 1972. That is ‘‘immersed boundary method (IB meth-
od)”, in which a Cartesian grid was used to resolve blood flow
regardless of the complex geometry of human heart valve. The
effect of elastic heart valve wall on surrounding fluid flow was
taken into consideration through a force term on the right-hand
side of momentum equation. This idea successfully avoids the gen-
eration of an unstructured body-fitted grid to conform complex
geometries and thereby makes simulation of complex structure–

fluid interaction more efficient. Moreover, as a result of using mesh
of simple topology structure, the parallelization of code is straight-
forward and also more efficient.

Since then, IB methods have attracted many researchers’ atten-
tion. Many efforts have been made to improve the accuracy and
broaden the application. Generally, IB methods fall into two differ-
ent categories, i.e., continuous force approach and discrete force
approach [3]. A detailed discussion of IB methods can be found
in [4–7]. IB method was originated to mimic the effect of elastic
boundary on fluid flow and it made a sense that a force term was
to represent the effect since the elastic force model in [1] had a
physic basis. In a similar way, a PID (portion-integral-derivation)
force model was presented for rigid boundary [8]. However, the
free parameters included in this model may degrade numerical
accuracy as well as stability. To overcome this downside, Fadlun
et al. [9] proposed a direct-forcing scheme for rigid immersed
body. They also showed that solving the interpolation formulas
together with discrete momentum equations was equivalent to
applying force term and then the explicit addition of force term
was not required. This is where the original idea of ghost-cell based
immersed boundary (GCIB) method comes from. Compared with
original IB method [1] and direct-forcing method [10,11], no Dirac
delta function is used to distribute the force term from Lagrange
point to underlying Euler grid in GCIB method. Therefore, the
boundary is sharply represented. This is a desirable feature to
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resolve boundary layer in high Reynolds number flows. Besides,
since in GCIB method there is no need to modify the fluid solver
(i.e., the implementation of boundary conditions through this
method can be summarized into a separate module), its combina-
tion with existing solver is very easy. Another point worth of not-
ing is that a high-order interpolation scheme can be constructed
for GCIB method [12,13] to further save computational resource.

The difficulty in GCIB method’s extension to situations with
irregular geometries lies in how to track the boundaries correctly.
Conceptually, two ideas exist to overcome this. An unstructured
triangle surface mesh was used in [14–16]. This mesh can be used
to represent arbitrary geometries and has gained its popularity in
biology fluid mechanics where a very complex body, such as a
bluegill sunfish pectoral fin and a false vocal fold, interacts with
surrounding flows in a two-way coupled manner [17,18]. Another
choice is a standard level-set signed distance function [19,20]. This
strategy also applies to both rigid and deformable structures. We
refer the reader to [14–20] and references therein for detailed
descriptions of these two methods.

Application of IB methods to heat transfer problems was
reported by Kim et al. [21], in which a heat source/sink was intro-
duced into energy conservation equation to account for the effect
of hot/cool boundary wall. Wang et al. [22] proposed a multi-
direct heat source scheme to improve the accuracy of boundary
condition enforcement. Since then, many researchers have made
their efforts to improve IB methods’ capability to various heat
transfer problems [23–29]. In our previous work [1], a second-
order accurate GCIB method was designed for the implementation
of Dirichlet, Neumann and Robin boundary conditions. It also
should be noted that our GCIB method was combined with a com-
pressible fluid solver [30] and study on the effect of compressibility
on heat transfer process was carried out. In this paper, we combine
our previous method [1] with an unstructured surface mesh to
devise a GCIB method for the simulation of heat transfer process
between compressible fluid and irregular boundaries. To our best
knowledge, no such report has ever been presented.

The rest part of the current paper is organized as follows. Sec-
tion 2 gives the numerical methodology, including compressible
governing equations, introduction to GCIB method, construction
strategy for irregular geometry and two different interpolation
procedures for mirror point. Section 3 starts with a test case where
effect of the relative resolution between boundary and background
grid is investigated. Following this is a spatial convergence exam-
ination to check if the present GCIB method still remains a
second-order accuracy. After these, several benchmark cases are
studied to validate our GCIB method’s capability to handle irregu-
lar fluid–solid interface. Furthermore, compressibility effect in high
speed forced convective flow is revealed. Finally, we draw a con-
clusion in Section 4.

2. Numerical methodology

2.1. Governing equations

Mass, momentum and energy conservation equations together
with the equation of state are used to describe the compressible
flows in present paper. The continuity equation reads as follows,
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where q is fluid density, u
!

is the vector of fluid velocity and t is
time.

In our research, the temperature ratio between solid and fluid is
small. Therefore, we can assume properties of fluid such as
dynamic viscosity l, specific heat cp at constant pressure and heat

conductivity k to be constant. Thus, the momentum and energy
conservation equations can be simplified as,
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In Eq. (2), p is pressure, f
!
vs ¼ r � ð2qmSÞ is viscous force, and

m ¼ l=q is kinematic viscosity. The symbol S represents trace-less

strain rate tensor with Sij ¼ ð@ui=@xj þ @uj=@xiÞ=2� dijr � u! =3. The
last term on the right hand side of energy equation is viscous dis-
sipation source.

The state equation for an ideal gas to close Eqs. (1)–(3), is given
by,

p ¼ qRT ð4Þ
where, R is the specific gas constant and can be calculated from
R ¼ Ru=M. Ru is universal gas constant and M is molar mass.

The above governing equations are solved by a sixth-order cen-
tered finite-difference scheme on a non-staged mesh and an expli-
cit three-stage Runge–Kutta scheme for spatial derivative and time
advancement, respectively. The time step is limited by CFL number
criterion. The sixth-order centered finite-difference scheme can be
expressed as follows,

The first-order derivative:

f 0i ¼ ð�f i�3 þ 9f i�2 � 45f i�1 þ 45f iþ1 � 9f iþ2 þ f iþ3Þ=60dx ð5Þ
The second-order derivative:

f 00i ¼ð2f i�3�27f i�2þ270f i�1�490f iþ270f iþ1�27f iþ2þ2f iþ3Þ=180dx2
ð6Þ

where, dx is the local grid size.
To avoid ‘‘wiggles”, the advection term in Eqs. (1)–(3) is dis-

cretized by a fifth-order upwinding scheme in which the point fur-
thest downwind is excluded from the centered finite-difference
stencil. The fifth-order upwinding stencil can be written as,

�uf 0ðup;5thÞ ¼ �uf 0ðcentr;6thÞ þ
jujDx5
60

f ð6Þ ð7Þ

where Dx is local grid size.
In order to construct the above upwinding scheme, the sixth-

order derivative is needed. And it is straightforward to approxi-
mate such a derivative by Taylor expansion on a uniform mesh.
However, when a stretched grid is used, things become compli-
cated. In this paper, the following chain procedure is proposed to
calculate the sixth-order derivative and thus to construct a fifth-
order upwinding scheme on a stretched grid.
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