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a b s t r a c t

The phonon Boltzmann Transport Equation (BTE) is appropriate for modeling heat conduction in semi-
conductor materials at the nanoscale. However, the BTE is difficult to solve on account of the directional
and spectral nature of the phonon intensity, which necessitates angular and spectral discretization, and
ultimately results in a large number (typically few hundreds) of four-dimensional partial differential
equations. In the ballistic (large Knudsen number) regime, the phonon intensity is highly anisotropic,
and therefore, angular resolution is desirable. However, in the diffusive (small Knudsen number) regime,
the intensity is fairly isotropic, and hence, angular discretization is wasteful. In such scenarios, the
method of spherical harmonics (PN approximation) may be effectively used to reduce the large number
of directional BTEs to a few partial differential equations. Since the Knudsen number is frequency depen-
dent, the decision to preserve or eliminate angular discretization may be made frequency by frequency
based on whether the spectral Knudsen number is large or small. In this article, a hybrid method is pro-
posed in which for some frequency intervals (bands), full angular discretization is used, while for others,
the P1 approximation is invoked to reduce the number of directional BTEs. The accuracy and efficiency of
the hybrid method is tested by solving several steady state and transient nanoscale heat conduction
problems in two and three-dimensional geometries. Silicon is used as the candidate material. It is found
that hybridization is effective in significantly improving the efficiency of solution of the BTE—sometimes
by a factor of three—without significant penalty on the accuracy.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Effective thermal management is critical to further miniaturiza-
tion and improvement of the power density and performance of
next-generation electronic and optoelectronic devices. Typical fea-
ture sizes (or characteristic length scales) in such devices range
between 10 and 1000 nm. In comparison, the dominant carriers
of energy in semiconductor materials, namely phonons, have spec-
tral mean free path of the order of a few hundred nanometers. For
example, the mean free path of phonons in silicon at room temper-
ature is approximately in the range 10–1000 nm, with the mean
around 300 nm [1]. Consequently, heat conduction in such devices
cannot be described adequately using continuum equations,
namely the Fourier law of heat conduction. The Boltzmann Trans-
port Equation (BTE) for phonons serves as a viable alternative [2,3]

for the prediction of non-equilibrium heat conduction in semicon-
ductor materials at the nanoscale.

The BTE for phonons is an integro-differential equation with 7
independent variables: time, 3 spatial coordinates, 2 directional
(or angular) coordinates, and frequency. Under the single-time
relaxation approximation, the scattering term of the BTE can be
significantly reduced (linearized) so that it becomes a
7-dimensional partial differential equation instead of an integro-
differential equation. Nonetheless, even the linearized BTE is very
challenging to solve because of its high dimensionality. Literature
survey reveals that essentially three methods have been employed
to date to numerically solve the phonon BTE: (a) the Monte Carlo
method, (b) the lattice Boltzmann method, and (c) deterministic
discretization-based methods. While the Monte Carlo method is
suitable for the inclusion of complex physics such as dispersion,
polarization, and various scattering mechanisms, as originally
demonstrated by Mazumder and Majumdar [4], and subsequently
used by other researchers [5,6], it is expensive for practical engi-
neering applications, especially when high spatial resolution is
sought. Recently, variance reduction techniques have enabled use
of the Monte Carlo method for solution of the BTE in realistic
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three-dimensional structures [7]. The lattice Boltzmann method
has only been used for the solution of the phonon BTE in simple
two-dimensional structures [8,9].

Deterministic solution of the phonon BTE based on discretiza-
tion in all 7 dimensions has been brought to the limelight by
Murthy and co-workers [10–13]. Such solutions make use of the
discrete ordinates method and its variant, namely the control angle
discrete ordinates method (referred to as the ‘‘finite-volume
method for radiation” in the radiation literature [14,15]), for angu-
lar discretization. The control angle discrete ordinates method
(CADOM) has been shown to be superior [14–16] since it mitigates
ray effects inherent in the discrete ordinates method. Angular dis-
cretization of the 7-dimensional BTE essentially results in a large
number of 5-dimensional BTEs since the total solid angle of 4p
must be split into smaller solid angles by discretization of the inde-
pendent polar and azimuthal angles. For example, Mittal and
Mazumder [17,18] have shown that approximately 20 angles in
each of the polar and azimuthal directions (resulting in a total of
400 solid angles) are necessary to obtain angular grid independent
solutions for realistic three-dimensional geometries, particularly
when the Knudsen number is large and transport is ballistic in nat-
ure. Other studies [19] have employed 64 angles for computations
in two-dimensional (2D) geometries. It is the need for angular dis
cretization—typically, at least several tens of solid angles—that
renders deterministic solution of the BTE computationally chal-
lenging. For example, Ali et al. [20] have recently reported solu-
tions to the transient, frequency-dependent phonon BTE in a
device-like three-dimensional (3D) geometry discretized using
604,054 tetrahedral control volumes. They reported calculation
times of about an hour for a single time-step on a 400-processor
parallel machine.

In an effort to improve the computational efficiency for solution
of the phonon BTE, several approaches have been explored. The
vast majority of these approaches have attempted to utilize the
physical attributes of phonon transport to propose a more efficient
solution strategy. When the mean free path of a phonon is signifi-
cantly larger than characteristic size of the system under consider-
ation, its transport is so-called ballistic. In such a scenario, the
Knudsen number, which is the ratio of the mean free path to the
characteristic size of the system, is large, i.e., Kn � 1. Conversely,
when the mean free path of the phonons is small in comparison

to the characteristic size of the system, they undergo numerous
scattering events, and transport is so-called diffusive. In such a sce-
nario, Kn � 1. In the ballistic regime, transport is highly direction
dependent. For example, the energy flux in a given direction (or
intensity) may be very large along paths that directly connect
hot and cold entities, while it may be small in other directions.
Since scattering re-distributes energy directionally, abundant scat-
tering, as is prevalent in the diffusive transport regime, makes the
intensity more or less isotropic or direction independent. Based on
the preceding discussion, it is fair to conclude that when scattering
is rare, it is imperative that the directional nature of the intensity
be captured well, while when scattering is dominant, this is not
necessary. Consequently, the need for directional discretization of
the BTE arises in ballistic regimes, and may be bypassed in diffu-
sive regimes. This fundamental premise has been employed to
develop hybrid solution strategies of different flavors for the BTE.
One of the earliest hybrid solution strategies to the BTE was pro-
posed by Chen and co-workers [21–23]. They based their method
on the so-called Modified Differential Approximation (MDA) [24],
originally developed for photon transport. In this approach, the
phonon intensity is assumed to be a superposition of a ballistic
intensity and a diffusive intensity. The diffusive intensity, by virtue
of being isotropic, is determined by invoking the method of spher-
ical harmonics. The resulting model is the so-called ballistic–diffu-
sive equations (BDE) of phonon transport. In the BDE formulation
[21–23], Chen and co-workers introduce artificial temperatures,
namely ‘‘ballistic” and ‘‘media” temperatures. These temperatures
do not have physical meaning and are introduced as mathematical
artifacts. As a result, they make the formulation—in particular, the
boundary conditions—difficult to understand and interpret. Also,
the surface-to-surface exchange formulation used by Chen and
co-workers [21–23] for determination of the ballistic component
of the phonon intensity, which employs geometric viewfactors, is
prohibitive for complex multi-dimensional geometries, in which
case, determination of the viewfactors itself is a monumental task
[25]. Mittal and Mazumder [17,18] developed an alternative for-
mulation, also based on the MDA, which eliminates the need to
use artificial temperatures. Furthermore, in their approach, the bal-
listic component of the phonon intensity is determined using the
CADOM, making the solution algorithm amenable to large-scale
computations in complex geometries. The method has been

Nomenclature

D density of states per unit volume [m�3]
f number density function
f0 equilibrium number density function
Gx;p spectral directionally integrated intensity

[W m�2 rad�1 s]
�h Dirac (or reduced Planck) constant = 1.0546 � 10�34

[m2 kg s�1]
Ix;p spectral directional phonon intensity

[W m�2 sr�1 rad�1 s]
I0;x;p equilibrium phonon intensity [Wm�2 sr�1 rad�1 s]
Kn Knudsen number, spectral or overall
Knc cutoff Knudsen number
kB Boltzmann constant = 1.381 � 10�23 [m2 kg s�2 K�1]
n̂ unit surface normal vector
Nband total number of spectral intervals (or bands)
Nband;Kn<Knc number of bands for which the Knudsen number is

below the cutoff
Ncell number of control volumes (or cells)
Ndir number of control angles (or directions)

p phonon polarization index
q heat flux vector [W m�2]
r position vector [m]
ŝ unit direction vector
t time [s]
T absolute temperature [K]
u internal energy per unit volume [J/m3]
Vk volume of cell k [m3]

Greek
a degree of specularity
h polar angle [radians]
tx;p phonon group velocity vector [m/s]
sx;p relaxation time scale [s]
x angular frequency [rad/s]
X solid angle (sr)
w azimuthal angle [radians]
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