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a b s t r a c t

The unsteady natural convective heat transfer of an incompressible fluid is studied in a square cavity
divided into two triangles using a flexible thermal conductive membrane. The temperature difference
in the cavity induces buoyancy forces and natural convective flows. The membrane is adopted to be very
flexible and thin, and hence, the interaction of the fluid and solid structure interaction (FSI) could change
the shape of the membrane. An arbitrary Lagrangian–Eulerian (ALE) formulation associated with an
unstructured grid is utilized to formulate the motion of the membrane. The solid and fluid governing
equations are formulated and written in a non-dimensional form and the behavior of the membrane
and the convective heat transfer of the cavity for various non-dimensional parameters are examined.
The effects of the stiffness of the membrane and the fluid parameters on the shape of the membrane
and the convective heat transfer in the cavity are studied.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The natural convective heat transfer has been the subject of
many studies due to its prime importance in various industrial
and natural processes. Some of the practical applications of natural
convection in enclosures are solar collectors, cooling of electronic
equipment, energy storage systems, air conditioned system in
buildings, thermal insulation and fire propensity control in build-
ings [1–3].

Giving the popularity of the natural convection heat transfer in
a differentially heated cavity, this problem has been addressed as a
benchmark study in many of the previous studies [3,5–15].

Earlier investigators have theoretically and experimentally
addressed many aspects of convective heat transfer in cavity enclo-
sures involving conjugate heat transfer effects [16], nanofluids and
entropy generation [17], magnetic field effects [18], cavity filled
with porous media [19] and the presence of a solid partition [20].

Many researchers have studied different geometry aspects of
convective heat transfer in simple enclosures, such as the geome-
try of triangular shape [21], C-shape [22], concentric annulus
[23], hemispherical shape [24–26], and parallelogrammic shape
[27].

Modeling of real systems may differ distinctly from a simple
enclosure. For example, a box containing electronic units is divided
into partitions using thermal conductive plates. Some of sensitive
electronic equipment should be insulated from the surrounding
using a conductive metallic cover. In many cases, a chemical reac-
tor should be divided in sections in which each section contains
different chemical species, but the heat transfer could be occurred
between the species through partitions. In a solar collector, the
convection in the two adjacent air layers is coupled at the glazing.
There are applications in which two fluids or containment gases
are separated by a very thin flexible layer. In building insulation
applications, the cavity in the walls is filled with a layer of poly-
ethylene to prevent heat loss. For the case of a very thin membrane
layer, the membrane is completely flexible and can go under
deflection through the interaction of the structure with the free
convection flow. Hence, the practical application of partitions in
enclosures has encouraged researchers to examine the effect of
the presence of partitions on convective heat transfer in cavities.

Tatsuo et al. [20] have experimentally studied the effect of the
presence of a partition on the steady-state natural convective heat
transfer in a cavity with a differential difference temperature at the
sidewalls. Acharya and Jetli [28] have numerically studied the
effect of the presence of a vertical partition on the natural convec-
tive heat transfer in a cavity with differentially difference sidewalls
temperature. Nishimura et al. [14] have addressed the effect of the
presence of multiple vertical partitions on the convective heat
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transfer in a rectangular enclosure. Kahveci [4] has examined the
effect of the presence of a vertical partition with finite thermal con-
ductivity on the natural convective heat transfer in a square cavity.
Chamkha and Ben-Nakhi [12,29,30] and Cheikh et al. [31] have
numerically examined the effect of partial partitions (fins) on the
convective heat transfer in cavities. All of the mentioned studies
have addressed the effect of the presence of a partition on the
steady state convective heat transfer in an enclosure.

Recently, there are few studies which have addressed the
unsteady convective heat transfer in portioned enclosures. Suvash
and Gu [32], Suvash et al. [33] have studied the unsteady natural
convective heat transfer in a triangular cavity. Xu et al. [13] have
examined the unsteady natural convective heat transfer of air in
a square cavity with a highly conductive vertical partition.

In all of the studies mentioned in the literature, the partition
has been considered as rigid. However, in many of real world prob-
lems, the partition can be flexible and the fluid-structure interac-
tion (FSI) can change the shape of the partition. Consequently,
the shape of the partition can affect the flow and heat transfer in
the cavity. In the transient case, the motion of the flexible partition,
the fluid flow and the heat transfer are coupled.

To the best of authors’ knowledge, the effect of the presence of a
flexible partition in a cavity on the natural convective heat transfer
neither in the steady state nor in the unsteady state has been
addressed yet. The present study aims to examine the effect of
the presence of a perfectly conductive flexible partition on the nat-
ural convective heat transfer in a square cavity.

2. Mathematical formulation

Consider the laminar flow steady-state natural convection heat
transfer of a Newtonian fluid in a square cavity of size L (height H
and length Lwhere L � H). The cavity is divided into two triangular
partitions using a diagonal thin flexible membrane of thickness t⁄p.
The membrane is flexible with the Young’s modulus of E, Poison’s
ratio m and density q. The vertical walls of the cavity are isothermal
of temperature difference DT while the top and bottom walls are

perfectly insulated. There is a very small open boundary with the
relative pressure of zero in each partition, allowing fluid entrance
or ejection due to movement of the membrane and the change of
volume of the partitions. The size of the open boundary is 0.1% of
the height of the cavity. It is assumed that the membrane is very
thin and perfectly thermally conductive with very low thermal
capacity. Hence, the effect of temperature gradients and transient
energy storage in the plate are neglected. It is assumed that the
temperature difference between the cavity sidewalls is limited,
and hence, the thermo-physical properties are independent of tem-
perature variation and the Boussinesq approximation is applicable.
The body force due to the weight of the membrane and the buoy-
ancy forces are taken into account. A schematic representation of
the cavity, coordinate system and the physical model are depicted
in Fig. 1.

The governing equations for the geometrically nonlinear elasto-
dynamic structural displacement of the membrane can be written
as:

qs
d2d�

s

dt2
�rr� ¼ F�

v ð1Þ

The governing equations of the conservation of mass, momen-
tum and energy in arbitrary Lagrangian–Eulerian (ALE) formula-
tion are written as:

r � u� ¼ 0 ð2Þ

@u�

@t
þ ðu� �w�Þ:ru� ¼ � 1

qf
rP� þ v fr2u� þ bgðT � TcÞ ð3Þ

@T
@t

þ ðu� �w�Þ:rT ¼ afr2T� ð4Þ

where r⁄ is the stress tensor, ds⁄ is the solid displacement vector, F⁄v
is the applied body force per unit of area, including the weight of
the membrane and the buoyancy forces acting on the flexible mem-
brane, u⁄ is the fluid velocity vector, w⁄ is the moving coordinate
velocity, P⁄ is the fluid pressure and T is the fluid temperature.

Nomenclature

Latin symbols
d displacement
E Young’s modulus
Es dimensionless flexibility
fi dimensionless body force
fp dimensionless body force
Fv dimensionless body force
g gravitational acceleration vector
Gr Grashof number
k thermal conductivity
L cavity size
Nu Nusselt number
p dimensionless pressure
Pr Prandtl number
Ra thermal Rayleigh number
t dimensionless time
T temperature
T0 initial average of the temperature in the enclosure
U dimensionless velocity magnitude
u, v dimensionless velocity vector
up moving coordinate velocity
Ws strain energy density
x, y Cartesian coordinates

Greek symbols
ll Lamé parameter
a thermal diffusivity
b thermal expansion coefficient
e strain
h dimensionless temperature
j solid-to-fluid thermal conductivity ratio
k Lamé parameters
m kinematic viscosity
q density
r stress tensor
t Poisson’s ratio
s Dimensionless time

Subscripts
c cold
f fluid
h hot
p partition
R ratio

Superscripts
⁄ dimensional
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