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a b s t r a c t

Uncertainty propagation analysis in engineering systems constitutes a significant challenge. To
effectively solve the uncertain heat conduction problem with multiple random inputs, a random
collocation method (RCM) and a modified random collocation method (MRCM) are established based
on the spectral analysis theory. In both methods, the truncated high-order polynomial series is adopted
to approximate the temperature responses with respect to random parameters, and the eventual
probabilistic moments are derived by using the orthogonal relationship of polynomial bases. In the
pivotal process of calculating the expansion coefficients, RCM evaluates the deterministic solutions
directly on full tensor product grids, whereas the Smolyak sparse grids are reconstructed in MRCM to
avoid the huge computational cost caused by high dimensions. Comparing the results with traditional
Monte Carlo simulation, two numerical examples verify the remarkable accuracy and effectiveness of
the proposed methods for random temperature field prediction in engineering.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, numerical heat transfer with given determinis-
tic parameters has undergone a rapid development [1]. However,
the ubiquitous system variability due to aggressive environment
factors, incomplete knowledge and inevitable measurement errors
makes the nondeterministic methods more feasible in practical
engineering [2]. The main techniques to characterize system
uncertainties can be grouped into three categories: probabilistic
method, fuzzy theory and interval analysis [3–5]. In most cases,
the input uncertainties can be modeled as random variables
with probability density functions, which means the probabilistic
method can be considered as the most valuable strategy for
uncertainty propagation analysis [6,7].

It is a common practice in engineering to use mean values for
uncertain parameters and then introduce the safety factors to over
specify the system responses [8]. This treatment is easy to
implement, but it cannot satisfy the requirement for elaborate
analysis of the modern engineering systems. Thus, the probabilistic
modeling and analyzing methods have gained an increasing
popularity resorting to the reliable numerical results when the
probabilistic characteristics of input parameters (such as probability
density distribution, mean value, variance, etc.) are given. Up to

now, Monte Carlo simulation is still considered as the simplest
approach to solve uncertain problems in a probabilistic framework
[9,10], but its accuracy strongly depends on the sample number.
Considering the excessive computational cost, Monte Carlo method
is commonly introduced as a referenced approach, rarely used in
practical engineering. The random moment approach, whose
objective is to calculate the moments of system responses directly
needs to construct a closed equation system by assuming that a
higher-order term is a function of the lower-order terms [11,12].
However, there is no general strategy for solving the closure
problem. Besides, the error caused by most closure techniques is
not easy to quantify. The random perturbation method, based on
the Taylor series of random quantities around their mean values,
has been widely used in practice due to its smaller computational
cost and easily guaranteed convergence condition [13,14]. But this
method often requires the uncertainty level of random parameters
to be small enough because of the finite-term truncation. For the
popular engineering problems with large uncertainties, the results
obtained by perturbation method will be unacceptable.

In recent years, the spectral method has become another effec-
tive approach for the random uncertainty propagation [15]. Based
on the polynomial chaos theory firstly introduced by Ghanem [16],
Xiu and Karniadakis presented a developed spectral decomposition
method for the transient heat conduction problem subjected to
random inputs [17]. It should be noted that besides selecting
appropriate polynomial type, the main work of spectral method
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is to calculate expansion coefficients in polynomial series. Up to
now, there are two kinds of approaches for the expansion coeffi-
cient calculation. The first one is known as the Galerkin approach,
where the residue of random governing equations is orthogonal to
the linear space spanned by polynomials [18]. By using the
Galerkin projection, Xiu and Shen derived a set of deterministic
equations for the expansion coefficients in random diffusion
problem [19]. Pettersson et al. adopted the Galerkin approach to
investigate the Euler equations subjected to random uncertainties
in initial and boundary conditions [20]. Although the accuracy of
Galerkin approach is optimal, new codes are needed to solve a
large number of coupled equations, which can be considered as
its main disadvantage, especially for the problems with complex
and nonlinear forms. The second one is known as the collocation
method, where only a set of deterministic codes need to be run
at the selected nodes [21]. Based on the tensor product of Gauss
points, Babuska et al. proposed a collocation method for solving
elliptic partial differential equations with random coefficients
and forcing terms [22]. Using the tensor product Lagrange
polynomials, Bressolette et al. applied the collocation method to
analyze large classes of uncertain mechanical problems with
random input data [23]. To avoid the huge computational cost
caused by the high-dimensional full tensor product grids, some
research work has been done on sparse grids [24]. Compared with
Galerkin approach, the main advantage of collocation method is
ease of implementation. Nevertheless, current research on random
collocation method is mainly concentrated in the special fields of
mathematics and structural mechanics, while its application in
uncertain heat transfer problems is mostly unexplored.

In this study, it is the first time that the collocation methods
have been used to solve uncertain heat conduction problem in
engineering. Besides, by combining the nested Clenshaw–Curtis
nodal sets with Smolyak algorithm, the collocation method is
further improved. The paper is structured as follows. The basic theory
of polynomial approximation for random heat conduction problem is
introduced in Section 2. Then two random collocation methods are
presented in the next two sections. The first one is RCM where the
Clenshaw–Curtis collocation points are directly constructed by the
full grids. To improve the computational efficiency for the high-
dimensional problems, the Smolyak algorithm is adopted in MRCM
to reconstruct the sparse grids. In Section 5, two numerical examples
about a thermal plate and a sandwich structure are provided to
demonstrate the effectiveness and accuracy of proposed methods,
and we conclude the paper with a brief discussion at last.

2. Polynomial approximation of random temperature response

The governing equation of steady heat conduction problem
with a heat source can be expressed as
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where X is a bounded domain; TðxÞ denotes the temperature
response; kðxÞ stands for the heat conductivity, and f ðxÞ is the inten-
sity of heat source.

For the interior domain X bounded by C as shown in Fig. 1, four
kinds of boundary conditions are considered as follows
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where Ts is the given boundary temperature; n is the normal
vector; qs denotes the boundary heat flux; h; Te represent the heat
transfer coefficient and ambient temperature; r; e stand for the
Stefan–Boltzmann constant and surface emissivity.

For the practical heat conduction problem in engineering, due
to vaguely defined system characteristics and insufficient informa-
tion, the uncertainties in material properties, external loads and
boundary conditions are unavoidable. In this paper, the uncertain
input parameters whose probability distribution functions can be
defined unambiguously based on the sufficient experiment data
are expressed as a random vector n ¼ n1; n2; . . . ; nnð Þ, where n
denotes the number of random variables. Therefore, the governing
Eq. (1) with multiple random inputs can be rewritten as
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where V stands for the probability space.
As we know, the traditional probabilistic methods based on

Taylor series expansion only adopt the limited information around
the mean value to approximate the response function, whose
accuracy becomes unacceptable if the uncertainty level of random
parameters is not small enough. To overcome this shortcoming, in
this paper we will adopt the high-order polynomial series to
approximate the temperature response with a much higher
accuracy level. According to the framework of polynomial chaos,
the random temperature response Tðx; nÞ can be expanded as

Tðx; nÞ ¼
X
i

T iðxÞUiðnÞ ð4Þ

where UiðnÞ stands for the n-dimensional orthogonal polynomial
basis, and can be determined in advance based on the distribution
type of random variables; T iðxÞ represents the corresponding
expansion coefficient, and i ¼ ði1; i2; . . . ; inÞ denotes the multi-
index. In practice, a maximum order N is often selected to truncate
the polynomial series up to finite terms, by which Eq. (4) can be
concisely rewritten as

Tðx; nÞ � TNðx; nÞ ¼
X
ij j6N

T iðxÞUiðnÞ ð5Þ

where ij j ¼ i1 þ i2 þ � � � þ in, and the total number of polynomial
expansion terms can be calculated by Cn

nþN with respect to the
number of variables n and the order of polynomial series N.

By using the orthogonal relationship of polynomial bases
UiUj
� � ¼ cidij, where ci ¼ ci1 � � � cin is the normalization factor and
dij is the n-variate Kronecker delta function, the expectation and
variance of Tðx; nÞ can be approximated by

E Tðx; nÞ½ � � E TNðx; nÞ½ � ¼ T0ðxÞ ð6Þ

Var Tðx; nÞ½ � � Var TNðx; nÞ½ � ¼
X
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Fig. 1. Four kinds of boundary conditions.
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