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a b s t r a c t

The present work aims to determine the effective thermal conductivity of composites made of an isotro-
pic matrix phase in which circular or spherical inhomogeneities are embedded. The inhomogeneity
phases can be anisotropic and the interface between the inhomogeneity and matrix phase can be mod-
eled by a general thermal imperfect interface model across which both the temperature and normal heat
flux across can suffer a discontinuity. To achieve this objective, we derive first a unified and exact solution
for the thermal fields of the inhomogeneity problem consisting of a spherical or circular anisotropic inho-
mogeneity inserted via a general thermal imperfect interface into an infinity isotropic matrix medium
subjected to a remote uniform loading at its external surface. Unlike the relevant results in elasticity,
the intensity and heat flux fields inside circular and spherical inhomogeneities are shown to remain uni-
form even in the presence of the general thermal imperfect interface and anisotropy of inhomogeneity.
Next, with the help of the foregoing solution results for the heterogeneity problem, the differential
scheme is extended to predicting the effective thermal conductivity of composites with taking into
account the imperfect interfaces between the constituent phases. Finally, the minimum potential and
complementary energy principles and the morphologically representative pattern approach based on
the Hashin–Shtrikman variational principles and the variational polarization principles are applied to
such inhomogeneous materials and to bracketing their effective thermal properties. By constructing trial
appropriate intensity and heat flux fields, the first- and second-order upper and lower bounds are
obtained for the effective thermal conductivity of multiphase materials consisting of spherical or circular
inhomogeneities embedded in a matrix. The estimations obtained by the differential scheme for the
effective conductivity are shown to comply with the first- and second-order upper and lower bounds.
Numerical results are provided to illustrate the dependence of the effective conductivity on the sizes
of inhomogeneities and to compare the estimations with the relevant upper and lower bounds.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the mechanics and physics of composite materials, most of
the classical approximation schemes dedicated to estimating the
effective properties of composite materials adopt often the
assumption that the interfaces between the constituent phases
are perfectly bonded. In the context of thermal conduction, an
interface is called perfectly bonded if and only if across this inter-
face, both temperature and normal heat flux are continuous.
However, in many situations of practice, for example with pres-
ence of roughness or mismatch between the phases, the assump-
tion of perfect bonding is inappropriate. Therefore, the
consideration of imperfect interfaces between the constituent

phases of composites is unavoidable. In the context of thermal con-
duction phenomenon, among all the linearly thermal imperfect
interface models, the most widely used thermal imperfect inter-
face models are the highly conducting (HC) interface model and
the Kapitza’s interface thermal resistance model, namely also
lowly conducting (LC) interface model. First, the LC interface model
stipulates that the normal component of the heat flux vector is
continuous across an interface while the temperature across the
interface suffers a jump proportional to the normal heat flux com-
ponent (see e.g. [4]). The effect of thermal resistance interfaces on
the effective conductivity of composites has been widely investi-
gated (see e.g., [2,5–15]). Second, viewed as dual to the LC interface
model, the HC interface one assumes that the temperature field is
continuous across an interface while the normal heat flux is
discontinuous across it (see e.g., [12,16–21,14]).
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Recently, the general thermal imperfect model has been pro-
posed in the works of Gu et al. [22,23]. Unlike the two previous
HC and LC imperfect interface models, the general thermal imper-
fect model, adopts a discontinuity of both the temperature and of
the normal heat flux. The jumps the temperature and of the normal
heat flux across the general imperfect interface must verify the
some jump relations (see e.g. [22,23]). This imperfect interface
model was at the beginning proposed on the basis of some phe-
nomenological considerations and next derived rigorously with
the aid of an asymptotic approach. More precisely, by considering
a material surface or interface as the limit case of a very thin inter-
phase situated between two bulk phases, the asymptotic approach
showed that the Kapitza’s interface thermal resistance model or
the HC interface model can be derived from the general thermal
imperfect model when the interphase is much less or more
conducting than each of the constituents. In other words, the gen-
eral imperfect interface model includes the two previous highly
and lowly conducting imperfect interface models as particular
cases. This asymptotic approach, closely related to some mathe-
matical techniques of homogenization, was initiated with the
works [1–3,5,18,24–26] in the general situation.

The present work is concerned with the determination of the
effective thermal conductivity of multiphase composites with gen-
eral thermal imperfect interfaces. All results obtained and elabo-
rated methods in this work in the context of thermal conduction
phenomenon are transposable to other transport phenomena like
electric conduction, dielectrics, magnetism, diffusion and flow in
porous media and to anti-plane elasticity, owing to their mathe-
matical analogy and by means of appropriate physical interpreta-
tions. The composites studied in this work consist of a matrix in
which anisotropic circular inclusions or spherical inclusions of dif-
ferent sizes are, in the two-dimensional (2D) or three-dimensional
(3D) case, embedded via interfaces described by the general
thermal imperfect interface model. The objective of the present
work is threefold:

� First, it aims at obtaining a unified and exact solution for the
thermal fields of the inhomogeneity problem in which a spher-
ical or circular anisotropic inhomogeneity is embedded into an
host infinity isotropic matrix medium subjected to a remote
uniform loading at its external surface via a general thermal
imperfect interface. By using an integral formulation, apart from
the uniform part of the solution, the thermal disturbance of the
solution due to the presence of the inhomogeneity and of the
general thermal imperfect interface is decomposed into three
parts which correspond to three sub-problems related to a pre-
scribed uniform eigen-temperature gradient over the inhomo-
geneity, a temperature jump and a normal heat flux
component jump at the imperfect interface. Each sub-problem
can be exactly and analytically solved. Unlike the relevant
results in elasticity, the intensity and heat flux fields inside cir-
cular and spherical inhomogeneities are shown to remain uni-
form even in the presence of the general thermal imperfect
interface. Dissimilar to the results obtained in recent works
with general thermal imperfect interfaces (e.g. [22,23]), the
results derived, in the present work, for thermal fields of the
inhomogeneity problem hold for any thermal anisotropy of
the inhomogeneity phase. The heterogeneity problem under
consideration in the present work plays an important role in
micromechanics of linear composites. The solution obtained
for this heterogeneity problem is needed to apply most of the
well-known micromechanical schemes dedicated to estimating
the effective properties of inhomogeneous materials, for
example, the dilute, Mori–Tanaka, self-consistent, generalized
self-consistent models to estimate the effective properties of
heterogeneous materials.

� Second, it consists in extending the classical minimum potential
and complementary energy principles and the morphologically
representative pattern approach [27–29] based on the Hashin–
Shtrikman variational principles [30] and the variational polar-
ization principles [31] in elasticity to the thermal conduction
phenomenon with taking into account the discontinuities and
effects of interfaces between the matrix and inhomogeneity
phases. By applying these variational principles and by con-
structing piecewise non-uniform trial intensity and heat flux
fields, the first- and second-order upper and lower bounds can
be derived for the effective thermal conductivity for such mul-
tiphase materials.

� Finally, it has the purpose of using the solution results obtained
in the foregoing inhomogeneity problem and the extended dif-
ferential scheme to estimate the effective thermal conductivity
of multiphase composites. In contrary to results provided by
applying the dilute, self-consistent schemes, we show that, in
the presence of imperfect interfaces, the effective conductivity
obtained by the differential approximation are always com-
prised between the generalized first- and second-order upper
and lower bounds that are derived previously.

The paper is structured as follows. In Section 2, the phase constitu-
tive laws of composites under investigation, the general thermal
imperfect interface model and the general form of the effective
thermal conduction behavior are specified. Section 3 is dedicated
to deriving the solution for the thermal fields of the inhomogeneity
problem consisting of a spherical or circular anisotropic inhomo-
geneity embedded into an host infinity isotropic matrix medium
subjected to a remote uniform loading at its external surface via a
general thermal imperfect interface. In Section 4, closed-form
expression is obtained for the effective conductivity by using the
differential scheme. In Section 5, by applying the classical minimum
potential and complementary energy principles and by using the
morphologically representative pattern approach, the first- and
second-order upper and lower bounds are derived for the effective
thermal conductivity of composites. In Section 6, the effects of gen-
eral thermal imperfect interfaces and inhomogeneity sizes on the
effective conductivity of composites are numerically discussed
and illustrated. In Section 7, a few concluding remarks are provided.

2. Setting of the problem

We consider in this work a three-dimensional (3D) or two-
dimensional (2D) composite (or multiphase material) consisting
typically of N (P 1) kinds of spherical or circular inhomogeneities
embedded in a matrix. Each kind of inhomogeneities contains sev-
eral identical spherical or circular inclusions which are assumed to
be randomly distributed and orientated in the matrix phase. In
other words, two spherical or circular inclusions belong to the
same kind if and only if one may be obtained from the other one
via a translation or/and rotation. The matrix and each inhomogene-
ity are assumed to be individually homogeneous. Relative to a 2D
or 3D Cartesian coordinate system fx1; . . . ; xdg, with d ¼ 2 or 3, in
a right-handed orthonormal basis ff1; . . . ; fdg, the matrix, referred
to as phase 0, and the ith inhomogeneity, called phase i with
i 2 ½1;N�, have the linear thermal conduction behavior described
by an anisotropic Fourier’s law

qðmÞ ¼ KðmÞ � eðmÞ or eðmÞ ¼ HðmÞ � qðmÞ ð1Þ

where KðmÞ and HðmÞ ¼ ðKmÞ�1, with m ¼ 0;1; . . . ;N, stand for the
second-order tensors of thermal conductivity and resistivity of phase
m, which are symmetric, positive definite and in general orthotropic.
However, the present work is limited to the case where the matrix
phase is assumed to be isotropic, so that the expressions for the
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