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a b s t r a c t

Reaction–diffusion equations describe a number of physical, chemical, and biological phenomena, many
of which occur in composite environments with piece-wise constant diffusion coefficients. We develop
semi-analytical solutions of axisymmetric reaction–diffusion equations with first-order reaction kinetics
and continuous transient boundary conditions. These solutions are directly applicable to heat conduction
in composite media with transient boundary conditions and heat generation. The solutions lose their
robustness in the long time regime, when the Laplace variable tends to zero. This limitation is overcome
by the use of corresponding steady-state solutions.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Transient one-dimensional solutions for heat conduction in
composite media have been developed by several authors. Ozisik
[10] provides an extensive review of various solutions obtained
via Laplace transformations and Green’s functions to handle
transient problems, and the generalized orthogonal expansion
technique to solve homogeneous or steady state problems. Carslaw
and Jaeger [3] present solutions derived by means of the Laplace
transformation. Sun [11] and de Monte [9] derive solutions utiliz-
ing the eigenfunction expansion method. Huang [6] uses Green’s
functions to derive solutions for periodic boundary conditions. Dias
[5] presents a recursive method based on Green’s functions to
develop a solution. Beck et al. [2] develop a Galerkin-based
Green’s function method to analyze multidimensional problems.
Aviles-Ramos et al. [1] develop a two-layer composite heat
conduction solution with periodic boundary conditions using a
spectral method with an orthotropic layer to estimate thermo-
physical properties.

This work employs Laplace transforms to improve previous
solutions by solving problems with first-order reaction and source
terms in composite media with any number of layers, subject to
transient boundary conditions. The first-order reaction term in
mass transfer problems is equivalent to the heat generation term
in heat conduction problems. Transient boundary conditions of

the periodic form are of particular relevance to many problems
such as seasonal or diurnal temperature changes outside of a
structure. Another application is diffusion through fractured rock
[8]. The model developed here can be incorporated as a multi-
layered rock medium in the fracture matrix.

More recent work by Sun et al. [11] and de Monte [9] uses
eigenfunction expansions to derive nominally analytical solutions,
even though the eigenvalues must be calculated numerically and
the accuracy of the solution is improved by including more terms
in the eigenvalue calculation. The number of required terms in
the eigenfunction expansion method increases for small times
[11]. The eigenfunction method is advantageous for large-time
solutions, as Laplace transform solutions suffer numerical round
off for large time values. We overcome this disadvantage by
implementing the final value theorem, which produces an exact
steady-state solution in real space with no numerical calculation and
no need for eigenvalue calculation or increased term inclusion
for accuracy. Thus the solution presented here is both valid and
accurate for all times. The only exception to this is some intermediate-
time regimes characterized by large Damköhler numbers.

A unique advantage of the Laplace transform methods, as it is
applied to the current problem, is that the boundary conditions
can be isolated as a multiple of the rest of the solution rather than
as a component tied inside of an integral. This unique feature
allows for various types of boundary conditions to be easily incor-
porated into the problem. Isolation of the boundary conditions is
also useful for linking multiple solutions together in order to create
a composite solution. The difficulty often presented by the Laplace
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transform method is the transformation back to real space. Though
this inverse transformation can be done for each and every
potential boundary condition, this can be a tedious task in systems
with a large number of layers. Li et al. [7] presented an analytical
solution for a first-order reaction–diffusion problem in a two layer
slab, which does not consider arbitrary time-dependent boundary
conditions. Extension of this solution to an m-layered solution
(where m is any number of layers) is cumbersome. Our method
relies on the numerical inverse Laplace transform algorithm
developed by De Hoog [4] to handle the m-layered solution.
Though this presents a numerical finale to the solution, it yields
a very quick and accurate solution for a wide range of problems.

2. Methodology

2.1. The Model

The physical system models used in this paper are layered
pieces of material. For cylindrical and spherical coordinate prob-
lems the layers are concentric hollow circles or spheres. Fig. 1
depicts the problem in cylindrical coordinates. Each layer is num-
bered and has its own geometric and physical properties. The solu-
tion is robust enough to handle different layer thicknesses, as well
as varying diffusion and reaction coefficients and source terms.

A first-order reaction–diffusion equation is based on Fick’s law
with a first-order reaction term,

@C
@t

¼ Dr2C þ ðR þUÞC ð1Þ

where D is the diffusion coefficient,R is the first-order reaction rate
coefficient, and U is an unknown source term that is constant with
respect to time and space.

2.2. Non-dimensional form

The governing equation is transformed into its non-dimensional
form by defining the non-dimensional terms as

C ¼ C
Cc

; D ¼ D
Dc

; R ¼ R
Rc

; w ¼ U
Rc

n ¼ x
Lc

; q ¼ r
Lc

; s ¼ tDc

L2c

ð2Þ

where the subscript c denotes the characteristic value of the
relevant quantity. This transforms (1) into

@C
@s

¼ Dr2C þ DaðRþ wÞC ð3Þ

where Da is the Damköhler number defined as

Da ¼ RcL
2
c

Dc
ð4Þ

andRc and Dc are the largest coefficients in the composite medium,
such that

0 6 D 6 1; 0 6 R 6 1; 0 6 w 6 1: ð5Þ

2.3. Laplace transform

The Laplace transform is defined as

f̂ ðsÞ ¼ Lðf ðsÞÞ ¼
Z 1

0
f ðsÞe�ssds: ð6Þ

It is used in this work for two primary reasons. First, it allows
the boundary condition to be a multiplying factor of the equation
describing the problem in Laplace space rather than being a
component of an integral in the governing equation. Second, it
significantly simplifies the derivation of the solution by reducing
the dimensionality of a PDE. Since

f̂ ðsÞ ¼ L @f ðsÞ
@s

� �
¼ sf̂ ðsÞ � f ð0Þ; ð7Þ

taking the Laplace transform of (3) yields

sĈ � C0 ¼ L Dr2C þ DaðRþ wÞC
� �

ð8Þ

where C0 ¼ C0=Cc is the initial condition.
The general Laplace space solutions in each coordinate system

(Cartesian, cylindrical, and spherical, respectively) are

Ĉ ¼ Aebn þ Be�bn þ C0=S ð9Þ
Ĉ ¼ AI0ðbqÞ þ BK0ðbqÞ þ C0=S ð10Þ

Ĉ ¼ A
e�bq

q
þ B

ebq

bq
þ C0

S ð11Þ

where S ¼ s� DaðRþ wÞ, b ¼ ffiffiffiffiffiffiffiffiffiS=Dp
and A and B are constants of

integration.

2.4. Special cases

There are three particular cases that are considered in this
model. The first is referred to as the finite Neumann case; it has
a flux (Neumann) boundary condition at one boundary and a
Dirichlet boundary condition at the other. The second is the finite
Dirichlet case, with a Dirichlet boundary condition at each bound-
ary. The third is the semi-infinite Dirichlet case, which produces
the same results regardless of whether a Neumann or Dirichlet
boundary condition is used at infinity. The cases are described in
more detail below. Let a and b be the boundaries of each layer
and /̂ denote the time-dependent boundary condition in the
Laplace space. Then,

1. Finite Neumann, the solution in the range a 6 n 6 b with
boundary conditions

@Ĉða; sÞ
@n

¼ /̂aðsÞ; Ĉðb; sÞ ¼ /̂bðsÞ: ð12Þ

2. Finite Dirichlet, the solution in the range a 6 n 6 b with bound-
ary conditions

Ĉða; sÞ ¼ /̂aðsÞ; Ĉðb; sÞ ¼ /̂bðsÞ: ð13Þ
3. Semi-infinite Dirichlet, the solution in the range a 6 n 6 1with

the boundary conditionsFig. 1. A radial layered model.
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