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a b s t r a c t

This paper is devoted to develop an efficient computational procedure for the level set-based topological
design of heat conducting fields. Firstly, the level set model with a distance-suppression scheme
(generalized Hamilton–Jacobi equation) is used to implicitly represent boundary of heat conductive
material so that the periodical re-initialization can be avoided. Secondly, after demonstrating that the
finite element thermal analysis takes the major portion of the total computational time, we present a
weighting based velocity constructing method inspired from the conjugate gradient method to avoid
performing finite element thermal analysis for solving the generalized Hamilton–Jacobi equation.
Thirdly, a velocity renewing procedure and criteria for stopping the weighting method are developed
for insuring the stability and a quick convergence. Finally, two dimensional topology optimization results
of heat conduction problem under both single and multiple load cases are presented to demonstrate the
validity of the proposed method.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

To design a mechanical device, the initial channel configuration
setting is crucially important to the realization with high perfor-
mance. For this reason, topology optimization has been gradually
used at the concept level of the design process to arrive at a con-
ceptual proposal, such that design development time and overall
cost can be reduced while performance can be improved [1].

Topology optimization is regarded as an approach that
optimizes material layout within a given design domain such that
the required performance can be maximized [2]. With decades
past, several numerical methods for topology optimization have
been developed and they can be roughly classified into two
categories. The first one is density-based methods, such as the
homogenization method [3,4], the ESO (evolutionary structural
optimization) method [5,6] and the SIMP (solid isotropic material
with penalization) method [7,8]. The other one is the moving
boundary methods, such as the level set method [9–11]. When
compare with density-based methods, level set method does not

involve mesh-dependent and checkerboard patterns. Furthermore,
the level set method allows a clear description of the boundaries
and thus can avoid ambiguities of intermediate material phases
which are inevitable when using a density-based approach. Until
now, these methods have been applied for solving a variety of engi-
neering problems, such as compliant mechanisms design problem
[12] and vibration problem [2]. For more information, readers are
referred to several review articles, e.g., [13,14].

Thermal problems, such as design of radiative enclosures [15]
and heat sink devices [16], have also been discussed in the context
of topology optimization. Early efforts have been made by using
the density-based methods [17,18] due to their relatively concep-
tual simplicity and easy of use. For example, Li et al. [19] used ESO
method to solve the topology design problems subjected to steady
heat conduction. Gersborg-Hansen et al. [20] used SIMP method to
solve the heat conduction problem by using the finite volume
method. Evgrafov et al. [21] considered the problem of optimal
design of nano-scale heat conducting systems by developing a
more accurate model by kinetic theory.

Recently, level set methods have been continuously applied on
topology optimization of thermal problems. The earliest attempt
can be found in [22]. After that, Zhuang et al. [23] discussed the
heat conduction problem under multiple load cases. Yamada
et al. [24] proposed a level set-based methodology based on the
concept of the phase field method to solve thermal diffusive
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problems. Dealing with coupled thermal-fluid problem [25] and
thermal conductors considering design-dependent effects [26] also
have been conducted by the same research group.

Although level set methods have been widely utilized for solv-
ing topological design problems, the computational efficiency has
received relatively less attention in spite of its significance. In fact,
the conventional level set method for topology optimization
concerned with obtaining optimal results by solving the
Hamilton–Jacobi equation [9,10]. Meanwhile, the velocity for driv-
ing the evolution of the level set function is often set using the
steepest descent method. It has been well recognized that, for
solving the Hamilton–Jacobi equation, the time step has to satisfy
the Courant–Friedrichs–Lewy (CFL) condition [27,28]. Usually the
time step issued from this CFL condition is much smaller than
the one which plays the role of the descent step in the minimiza-
tion of the objective function. Furthermore, most of the current
developed topology optimization methods include relatively
time-consuming finite element analysis for the structure in each
iteration step. As a result, bad efficiency is often indispensable to
obtain an accurate optimal solution even if one performs several
explicit time steps for solving the level set equation [22,29–31,25].

Removing periodical re-initialization can improve the effi-
ciency, as mentioned in [32,33], where energy functionals are built
into the level set equation. However, this only has a very small
direct impact on efficiency because re-initialization only occupies
a small fraction of the overall time. Most efforts are made by devel-
oping new schemes to set the velocity. For instance, a mapping
algorithm is developed in [34] to speed up the evolving process
of level set equation. Luo et al. [35] developed a semi-implicit level
set method for structural topology optimization which allows
enhanced relaxation on the time-step length. The efficiency can
be greatly improved (for some cases, only 60 iterations are
needed). Lately, a semi-Lagrangian level set method incorporated
with a sensitivity modulation scheme is proposed in [36]. For this
method, a line search algorithm is developed. A velocity predictor–
corrector scheme is developed in [37] for solving structural
topology optimization where an inner loop is inserted to update
level set function separately. Both aforementioned methods can
yield fewer design iterations and thus it improves the overall com-
putational efficiency. Indeed, reducing the computational effort is a
challenging topic for further development of topology optimiza-
tion. Despite all the above attempts, efficient schemes for the level
set based topology optimization are still needed.

In this study, we attempt to propose an efficient scheme to solve
heat conduction problem. Firstly we use the level set model
with a distance-suppression scheme to avoid the periodical
re-initialization. After that we present a velocity constructing
method by using weighting scheme inspired from the conjugate
gradient method. This servers two main purposes. One is that the
generated velocity can provide an alternative direction to decrease
the objective function when comparing to the steepest descent
direction. The other is that one can use the method for several extra
iterations without performing the time-consuming elastic analysis.
Two dimensional topology optimization results of heat conduction
problem under both single andmultiple load cases are presented as
examples to demonstrate the validity of the proposed method.

The remainder of the paper is organized as follows. In Section 2,
the basic concepts of the level set method are introduced
and the generalized Hamilton–Jacobi equation for avoiding
re-initialization is introduced. In Section 3, the design problem that
is considered in this paper is introduced. In Section 4, a weighted
equation which is inspired from the conjugate gradient method
is developed to construct the velocity function. In Section 5, meth-
ods for ensuring the stability and a fast convergence of the opti-
mization process are developed. The optimization algorithm is
proposed. In Section 6, several numerical examples are presented

to demonstrate the effectiveness of the proposed method. Finally,
conclusions and a discussion for further work are put forward.

2. Level set method with a distance suppression scheme

We firstly describe the underlying idea of the level set method
for topology optimization. Suppose that D is the reference domain
to contain all permissible shapes of the design domain X which
consists of material sub-domain and voids. Boundary @X is the
interface of the structure, and domain D nX represents the void
area. In level set method, the structural boundary @X is implicit
embedded in a scalar function of a higher dimension / [10,9] as
its zero level set. Therefore

/ðx; tÞ > 0 if x 2 X

/ðx; tÞ ¼ 0 if x 2 @X

/ðx; tÞ < 0 if x 2 D nX

8>><
>>: ð1Þ

where t is the time, x is a point in the design domain.
The optimization process can be transferred into the evolution

of the level set equation

@/
@t

¼ Vnjr/j ð2Þ

where Vn determines the motion of the interface.
Generally, to ensure the stability of the optimization process,

the gradient of the level set function near the zero level set needs
to be controlled in order to avoid the level set function becoming
too flat or steep. A so-called re-initialization procedure [27] is often
used to maintain the level set function as a signed distance func-
tion, i.e., jr/j ¼ 1. Unfortunately, this will bring some unsolved
issues, such as when and how to perform the re-initialization.
Furthermore, such a numerical implementation is also time-
consuming since additional partial differential equations (PDEs)
need to be solved [34].

To overcome these issues, a distance suppression scheme has
been developed in [33]. The underlying idea is to introduce an
extra functional into the optimization model, such that a general-
ized Hamilton–Jacobi equation is actually used to update the level
set function

@/
@t

¼ Vn þxr � drðjr/jÞr/ð Þ ð3Þ

where x is the weighting factor of the diffusion r � drðjr/jÞr/ð Þ
and set to

x ¼ DtR
Dt

ð4Þ

where DtR ¼ 0:5Dx=maxðjVRjÞ and Dt ¼ 0:5Dx=maxðjVnjÞ [33].
The diffusive rate drðjr/jÞ is defined as

drðjr/jÞ ¼ 1
jr/j

@rðjr/jÞ
@jr/j ð5Þ

where rðjr/jÞ is the energy density function, which can be defined
using

rðjr/jÞ ¼ 1
2
jr/j2ðjr/j � 1Þ2 ð6Þ

Updating level set function using Eq. (3) will simultaneously
minimize rðjr/jÞ, which makes jr/j either be 0 or 1. This means
the diffusion can maintain the level set function to close to a signed
distance function near the zero level set, meanwhile forcing the
gradient of the level set function to be 0 at locations far away from
the zero level set. Not only can this avoid the periodically
re-initialization, but also it can simplify the initialization process
of the level set function. Merging the above equations we have
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