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a b s t r a c t

The Lattice Boltzmann Method (LBM) is used to study steady and unsteady laminar flow in a channel with
an open square cavity and a heated bottom wall in two dimensions, under mixed convection flow con-
ditions. LBM is compared to results obtained by ANSYS-FLUENT for validation. Temperature, velocity
and Nusselt number agree very well in the range of Reynolds and Richardson numbers studied, i.e.
50 6 Re 6 1000 and 0:01 6 Ri 6 10. Our observations indicate that the effect of the buoyancy force is
negligible for Ri 6 0:1, for all values of the Reynolds number considered. For Ri = 1, 10 buoyancy effects
are important, which combined with a high enough Re (J200 in our study), causes the development of
the upstream secondary vortex and the stratification of the flow into two main recirculating cells. As pre-
viously observed in earlier studies, for high enough Ri the recirculation is no longer encapsulated, the
flow becomes unsteady, and an oscillatory instability develops. This is observed in our simulations start-
ing from Re = 500, Ri = 10. The analysis of the unsteady regime reveals a very rich phenomenology where
the geometry of the problem couples with the oscillatory thermal instability. This regime is characterized
by the periodic emission of pairs of vortices generated from the upper downstream vertex of the square
cavity, and pseudoperiodic variations of the Nusselt number which persist at least up to Re = 1500, while
the two main vortices remain in the cavity. Our observations extend previous studies and shed a new
light on the characteristics of the oscillatory instability and the role of the Reynolds and Richardson
numbers.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Lattice Boltzmann Method (LBM) has become a powerful
alternative to finite element and finite volume methods, for solving
different problems and applications in various engineering fields
such as different fluid flow cases, transport problems for single
and multiphase flow, heat and mass transfer, compressible flows,
porous media, magnetodynamics and chemical reaction problems
[1]. In this work, LBM is applied to study the problem of mixed con-
vection in an open cavity with a heated bottom wall. This particu-
lar case can be found in various engineering applications such as
solar devices, heat exchangers, nuclear reactors, electronic sys-
tems, etc. Experimental studies of buoyant flow in open cavities
can be found in the literature [2,3], and several authors have used
LBM in different geometries and complex flows [4–7]. The problem
of laminar natural convection in shallow inclined open cavities was
addressed in Ref. [8], where a constant heat flux is imposed
through the wall facing the opening of the cavity. Mixed convec-
tion in cavities has received less attention, but several authors have

previously analyzed this problem: in the early ’90s, Papanicolaou
and Jaluria [9–11] studied the mixed convection in a rectangular
enclosure, analyzing the flow for different inlet/outlet and heat
source locations as it happens in a cooled electronic device. Manca
et al. [12] studied the natural and mixed convection in rectangular
cavities (2D) with the T type of geometry and the effect of the posi-
tion of the heated wall. Stiriba and colls. [13,14] carried out a
numerical study of mixed convection for incompressible laminar
flow past an open cubical cavity, showing that it exhibits a three-
dimensional structure. Abdelmassih et al. also studied numerically
[15] and experimentally [16] the same problem. These authors pre-
sented results for steady and unsteady laminar regimes in three
dimensions, where the effect of the buoyancy force was analyzed
for a range of Reynolds and Richardson numbers, observing the
effect of natural and forced convection using, in a series of studies,
a three-dimensional incompressible finite volume flow solver,
ANSYS-FLUENT software and DPIV experimental technique. The
bottom of the cavity was heated at constant temperature, while
the other walls were adiabatic, at a Prandtl number for the fluid
equal to 0.7. Observations indicated that for Reynolds numbers
between 100 and 500, the flow was steady with a recirculating cell
inside the cavity for all the Richardson numbers studied, but the
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flow turned unsteady between Re = 500 and 1000 for Ri P0.01. For
Richardson numbers exceeding �0.01, heat transfer was enhanced
for all Reynolds numbers: the higher the Ri, the higher the Nusselt
number, as the buoyancy force became stronger and natural con-
vection was dominant. This had the effect to push the center of
the recirculating cell towards the upper right part of the cavity.

In the present study, we consider a similar arrangement with an
open square cavity embedded in the bottom wall of a channel and
present a detailed analysis of the two dimensional problem, which
differs from the three dimensional case in several aspects. It also
differs from the results obtained by previous authors [9–12] due
to the fact that the T geometry has a great influence in the flow
and the instabilities observed. We use the thermal LBM approach,
combined with ANSYS-FLUENT simulations to validate our find-
ings. Using the same T configuration as in the 3D case, we will
show how in 2D and above a certain value of the Richardson num-
ber, the recirculating cell is split into two cells and that an
unsteady flow regime is found exhibiting an intermittent pattern
characterized by the periodic emission of hot plumes towards
the channel outlet, originating from the upstream vertex of the
cavity. The formation of a double recirculation and the develop-
ment of the intermittent regime has not been previously reported
in the square or cubic cavity under similar conditions.

Likewise the Nusselt number shows a complex and pseudo-
periodic behavior where the values oscillate in a wide range. This
oscillating thermal instability was also found by Papanicolaou
and Jaluria [9], who showed that, for a given Reynolds number
(Re = 100) there exists a critical Richardson number (Ri = 32),
above which an oscillating regime sets up for the outflow heat flux.
The T shape of the geometry studied in our case, renders a more
complex and different problem, and a richer phenomenology.
Remarkably, Zamzari et al. [17] studied this very problem with
the same two-dimensional geometry, but such unsteady regimes
could not be identified in their study, due to the fact that the range
of Reynolds numbers (200–500) and Richardson numbers (0.25–1)
considered was too restrictive.

In the following sections we will describe the physical system,
the numerical setup and the details of the method used for the
analysis, to end up with the results and discussion of the work.

2. Physical problem

As shown in Fig. 1, the model consists of an open square cavity
of side L ¼ 0:1 m with a bottom wall heated at a constant temper-
ature Thot . Past the cavity, the channel is of length 3L, in order to
minimize the effect of recirculation in some cases. For the inlet
flow and the top wall, we fixed their respective temperatures Tref

at the value 298.1450 K (room temperature), and an uniform inlet
velocity u0 was set. The choice of velocity profile at the inlet mim-
icks the flow from a convergent nozzle, which is relatively easy to
reproduce experimentally. Moreover, an inlet boundary condition
where a fully developed velocity profile is set does not alter the
features of the flow and the results obtained are similar. The values
of Thot and u0 were varied to give the different cases for the Rey-
nolds ð50;100;200;400;600;1000Þ and Richardson numbers
ð0:01;0:1;1;10Þ considered. Non-slip and adiabatic boundary con-
ditions were applied at all the other boundaries; an open boundary
condition was used for the flow at the outlet to avoid reverse flow.

3. Numerical method

3.1. Lattice Boltzmann equation

The Lattice BoltzmannMethod (LBM) is an alternative and com-
putationally convenient method for the simulation of fluid flow,
having as predecessor the lattice gas automata (LGA) [18], which

Nomenclature

a thermal diffusivity, lattice units
DT temperature differential =ðThot � TÞ
X collision matrix operator, MRT model
m kinematic viscosity, lattice units
xi weights of the discrete velocities, D2Q9 model
sc dimensionless relaxation time for temperature
sv dimensionless relaxation time for momentum
ci discrete velocity directions
u macroscopic velocity
h dimensionless temperature in the vertical mid plane of

the cavity
c speed on the lattice =Dx=Dt; lattice space and time step

size
cs lattice speed of sound =c=

ffiffiffi
3

p
F dimensionless frequency
Fi external force =3qxigbðT � Tref Þ
f i density distribution function
f eqi equilibrium density distribution function
gi internal energy distribution function

geqi equilibrium internal energy distribution function
Gr Grashof number =gbðThot � Tref ÞL3=m2
L ¼ H length and height of the cavity
Nu local Nusselt number =� L

DT
@T
@y jwall

Pr Prandtl number =m=a
Re Reynolds number =u0L=m
Ri Richardson number =Gr=Re

2; gbðThot � Tref ÞL=u2
0

T local temperature
Tc cold temperature, lattice units
Th hot temperature, lattice units
Thot hot temperature
Tref reference temperature
u0 characteristic velocity of the flow
Ux dimensionless x-component of the velocity in the verti-

cal mid plane
Uy dimensionless y-component of the velocity in the hori-

zontal mid plane
Ulbm lattice velocity
Nu average Nusselt number =1L

R L
0 Nudx

Fig. 1. Illustration of open cavity with boundary conditions.
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