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a b s t r a c t

The present investigation deals with the study of steady laminar natural convective flow and heat transfer
of micropolar fluids in a trapezoidal cavity. The bottom wall of the cavity is kept at high constant temper-
ature, the inclined walls is kept at low constant temperatures while the top horizontal wall is adiabatic.
Governing equations formulated in dimensionless stream function and vorticity variables has been solved
by finite difference method of the second order accuracy. Comprehensive verification of the utilized
numerical method and mathematical model has shown a good agreement with numerical data of other
authors. Computations have been carried out to analyze the effects of Rayleigh number, Prandtl number
and vortex viscosity parameter both for weak and strong concentration cases. Obtained results have been
presented in the form of streamlines, isotherms and vorticity profiles as well as the variation of the average
Nusselt number and fluid flow rate. It has been shown that an increase in the vortex viscosity parameter
leads to attenuation of the convective flow and heat transfer inside the cavity.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Micropolar fluid is a subject of microphoric fluid theory. The
detailed description and the modeling of micropolar fluids were
initially introduced by Eringen [1–3]. This theory has become very
important to engineers and scientists working with
hydrodynamic-fluid problems and phenomena for the last few
decades. The potential importance of micropolar fluids in industrial
applications has motivated many researchers to extent the study in
numerous ways to include various physical effects. The essence of
the theory of micropolar fluid flow lies in the extension of the
constitutive equations for Newtonian fluids so that more complex
fluids such as particle suspensions, liquid crystals, animal blood,
lubrication, colloidal suspensions, turbulent shear flows, etc. can
be described by this theory. In practice, the theory of micropolar
fluids requires that one must add a transport equation representing
the principle of conservation of local angular momentum to the
usual transport equations for the conservation ofmass andmomen-
tum, and additional local constitutive parameters are also intro-
duced. The special features of micropolar fluids were discussed in
two comprehensive review papers of the subject and application
of this theory by Ariman et al. [4,5] and in the books by Eringen
[6] and Łukasewicz [7].

The convective motion driven by the buoyancy forces is a
well-known natural phenomenon and has attracted interest of
many researchers. In particular, the topic of natural convection in
cavities has received much attention in the past since many prac-
tical heat transfer situations can be modeled as flows in cavities.
There have been numerous investigations of natural convective
heat transfer that occurs in an enclosure (Sathiyamoorthy et al.
[8], Kandaswamy and Nithyadevi [9], etc.). Sathiyamoorthy et al.
[8] presented the numerical study of steady natural convection in
a closed square cavity under different boundary conditions. They
showed that for small Rayleigh numbers the average Nusselt num-
ber was almost constant due to heat conduction and increased
steadily as Ra increased.

Natural convection heat transfer and fluid flow were studied for
trapezoidal enclosures filled with a viscous (Newtonian fluid)
mostly at differentially heated temperature boundary conditions,
see Moukalled and Darwish [10,11], Boussaid et al. [12], Moukalled
and Darwish [13], Kuyper and Hoogendoorn [14], Sadat and Salag-
nac [15]. Analysis of convective heat transfer and fluid flow of
micropolar fluid in a vertical channel, lid-driven cavity and square
cavity has been conducted in [16–19]. We mention also to this end,
the paper by Hsu and Hong [20] on natural convection of microp-
olar fluids in an open cavity, which consists by two adiabatic
horizontal walls and one heated vertical wall, while the open end
has several different geometric features. However, to our best
knowledge, trapezoidal enclosures filled with a micropolar fluid
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have not been considered yet. Therefore, the main objective of this
paper is to examine the natural convection in a trapezoidal cavity
filled with a micropolar fluid. Streamlines, isotherms, average
Nusselt number and fluid flow rate are presented and discussed
in details.

2. Basic equations

The domain of interest filled with a micropolar fluid is
presented in Fig. 1 with dimensional Cartesian coordinates �x and
�y. The trapezoidal enclosure is bounded by isothermal inclined
cooled walls of temperature Tc, isothermal bottom hot wall of
temperature Th (Th > Tc) and adiabatic top wall. All four walls of
the cavity are assumed to be rigid and impermeable.

The micropolar fluid is considered to satisfy the Boussinesq
approximation and the flow regime is laminar. Taking into account
the theory of Eringen [1–3] for the micropolar fluid flow the
governing equations can be written in dimensional Cartesian
coordinates as follows
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In order to analyze the fluid flow and heat transfer in general
scale we introduce the following dimensionless variables

x ¼ �x=L; y ¼ �y=L; u ¼ �u=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbðT � TcÞL
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and also stream function w u ¼ @w
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and vorticity
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@y. Therefore the governing Eqs. (1)–(5) using the dimen-

sionless variables (6) can be written as follows
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with the following boundary conditions

w ¼ 0; x ¼ � @2w
@x2
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;

N ¼ n �x; h ¼ 0 on left and right inclined walls

w ¼ 0; x ¼ � @2w
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; N ¼ n �x; h ¼ 1 on bottom wall
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@h
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ð11Þ

Here nð0 6 n 6 1Þ is a micro-gyration parameter with n = 0
corresponding to the case where the particle density is sufficiently
great that microelements close to the wall are unable to rotate

Nomenclature

g gravitational acceleration
H height of the cavity
j micro-inertia density, j = L2

K vortex viscosity parameter, K ¼ j=l
L length of the bottom hot wall
N dimensionless microrotation
�N dimensional microrotation
Nu local Nusselt number
Nu average Nusselt number
p pressure
Pr Prandtl number, Pr ¼ m=a
Ra Rayleigh number, Ra ¼ gbðTh � TcÞL3=ðamÞ
T temperature of the fluid
Tc temperature of the cooled walls
Th temperature of the hot wall
�u; �v dimensional velocity components along �x and �y coordi-

nates
u, v dimensionless velocity components along x and y coor-

dinates

�x dimensional coordinate measured along the bottom
wall of the cavity

�y dimensional coordinate measured along the vertical
direction of the cavity

x, y dimensionless Cartesian coordinates

Greek symbols
a thermal diffusivity
b volumetric expansion coefficient of the fluid
c spin-gradient viscosity, c ¼ lþ j

2

� �
j

h dimensionless temperature
j vortex viscosity
l dynamic viscosity
q fluid density
u inclination angle of the inclined cooled walls
w dimensionless stream function
x dimensionless vorticity
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