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a b s t r a c t

This numerical study reveals and explains a mechanism of eddy emergence in the steady two-
dimensional thermal convection. A thin horizontal container is filled with water. The bottom and top
walls are adiabatic while the sidewalls have prescribed temperatures. Gravity and a horizontal gradient
of temperature drive the water circulation from the cold end to the hot end near the bottom and back
near the top. As the flow strength, characterized by the Grashof number Gr, increases, the horizontal
velocity reverses and local circulation cells emerge via bifurcation near the central stagnation point.
We argue that the reversals are likely caused by the entrainment effect of jets, which form near the hor-
izontal walls. This explains the experimental observations of Kirdyashkin (1984). No instability develops
for Gr 6 107 due to the stable vertical stratification of density. The obtained results are of fundamental
interest and can be relevant for the development of efficient heat exchangers.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Review of prior studies

The thermo-gravitational convection in a horizontal layer of a
fluid induced by the horizontal gradient of temperature is one of
basic problems of heat transfer. The global circulation between the
equatorial and polar oceanic regions occurs mostly due to the hori-
zontal gradient of temperature [1]. Similar flows are observed in
shallow water pools used for the removal of waste heat and in the
technology of crystal growth [2]. More applications are related to
cooling systems for nuclear reactors and solar energy collectors [3].

This problem also is of fundamental interest being a unique case
where experimental, analytical and numerical results allow mean-
ingful comparison in a wide range of the flow strength, character-
ized by the Grashof number, Gr.

Accordingly, the problem has attracted the attention of many
researchers. The detailed reviews [3–6] cover earlier studies.
Below, we discuss works which are relevant for this problem, but
not mentioned in these reviews.

For small and moderate Gr, the central part of elongated flow is
described by the elegant polynomial solution to the Boussinesq
equations found by Ostroumov [7]: u/umax = (y3 � y)(27)1/2/2,
where u is the horizontal velocity and umax is its maximal magni-
tude; y is the vertical coordinate, divided by the layer half-width.

The horizontal walls are located at y = ±1. Birikh [8] generalized
the solution [7] for the case where the upper surface is free and
subject to the thermal surface-tension (Marangoni) effect.

For small and moderate Gr, the solutions [7,8] excellently agree
with the experimental measurements performed by Kirdyashkin
[2]. Kirdyashkin observed the steady flow up to Gr � 107. As Gr
increases, the flow in the container transforms from that described
by solution [7] to the boundary-layer pattern with jets developed
near the horizontal walls and a slow double-reversed flow in
between the jets. It is striking that no instability occurs despite
the u(y) profile becomes wavy with a few inflection points.
This experimental fact seems contradicting to the stability studies
[9–11] of solution [7].

Birikh [9] considered the stability of flow [7] at the Prandtl
number Pr = 0 and found that the critical value of the Grashof num-
ber is Gr⁄ = 495. Gershuni, Zhukhovitsky and Myznikov explored
the stability of flow [7] at Pr > 0 with respect to two-dimensional
[10] and three-dimensional [11] disturbances. They predicted
two kinds of instability: (a) shear-layer K-instability related to
the existence of inflection point in the u(y) profile and (b) thermal
R-instability caused by the unstable density stratification near
the horizontal walls; here K is for Kelvin and R is for Rayleigh.
As Pr increases, the K-instability disappears for Pr > 0.5, but the
R-instability occurs for any large Pr.

Our recent study [12] explains this seeming controversy. The
horizontal walls have prescribed temperatures in the stability
studies [10,11] while the walls are adiabatic (no heat flux) in the
experiment [2]. It was found that the R-instability disappears if
the boundary conditions change from the fixed-temperature to
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the adiabatic ones [12]. The physical reason is that the density
stratification becomes stable in the entire flow domain for the
adiabatic conditions. This explains why Kirdyashkin observed no
instability [2].

The analytical solution [7] was generalized for the cylindrical
geometry and the centrifugal force replacing the gravity. For a
small axial gradient of temperature, the centrifugal convection in
a rotating pipe is also described by the polynomial solution [13]:
w/w0 = 1 � 4r2 + 3r4 and (T � T1)/(T0 � T1) = (1 � r2)3; where r is
the distance from the axis divided by the pipe radius. Subscripts
0 and 1 denote values of axial velocity w and temperature T at
the axis and sidewall respectively. There is also analytical (though
not polynomial) solution for a gap between two co-rotating pipes
[13]. For a narrow gap, the cylindrical problem becomes close to
that for a horizontal layer [7]. Birikh and Pukhnachev [14] general-
ized the solution [13] to describe a two-fluid thermal convection
with the Marangoni effect taken into account. The numerical sim-
ulations of the air–water centrifugal convection in a cylindrical
container [15] agree with the analytical solutions and revealed
the emergence of new flow cells as Gr increases.

Surprisingly, no numerical study has been performed for
the double-reversed water flow experimentally revealed by
Kirdyashkin [2]. The current paper partially fills this gap. Our
numerical results agree with the analytical solutions for small
and moderate Gr and also agree with Kirdyashkin’s experimental
measurements for large Gr where u(y) and T(y) significantly differ
from those described by the analytical solutions. For convenient
comparison, we focus on Gr values which correspond to the figures
in Ref. [2].

Our numerical study reveals the following important features
which were not reported in Kirdyashkin’s paper [2]: (i) the
development of the boundary layers near the vertical walls
where jets form (which are the most high-speed flow parts),
(ii) the emergence of local circulation cells via bifurcation and
(iii) the formation of near-stagnation region in the central part of
the container resulting in that the most of heat is transported by
a thin ring-like jet adjacent to the container boundary. Features
(i) and (iii) agree with prior analytical and numerical results while
feature (ii) is absolutely new. We provide physical reasons for
features (i)–(iii).

1.2. Flow reversal due to jet entrainment

Since the density stable stratification opposes the fluid vertical
motion, the upflow (downflow) focuses near the hot (cold) sidewall
and the vertical jets develop even for moderate Gr. As known, a jet
entrains an ambient fluid. Schlichting [16] found for a round jet,
that the fluid flow rate (through a normal-to-jet plane) increases
proportionally to the distance from the jet source and therefore
the far-field flow consists mostly of the entrained fluid. If a jet
issues from a wall, the flow reversal occurs as Fig. 1 (experiment
by Zauner [17]) and Fig. 2 (theory by Schneider [18]) illustrate:
the jet goes away from the wall while the entrainment flow moves
toward the wall. The reversal also occurs in a plume [19], a flow
driven by the thermal surface tension (Marangoni) effect [15]
and in a flow near a hot vertical wall [20]. More jet-induced coun-
terflows are discussed in Ref. [21]. These examples indicate that
the velocity reversal can be a result of jet-like flow independent
of how it is driven.

1.3. Circulation cell due to velocity reversal

The development of local circulation regions is typical of
thermal convection and known starting with the Bénard cells
[22]. Recent examples are reported in Ref. [15] and paper by Xu
et al. [23]. However, the jet entrainment mechanism of the cell

formation has not been addressed in the literature. Our paper par-
tially fills this gap by explaining how this mechanism works. To
this end, the flow studied by Kirdyashkin’s is suitable because it
remains stable despite the horizontal velocity becomes double-
reversed. This stability seems striking and unique because counter-
flows typically suffer from the shear-layer K-instability [9–11].

It is shown here that the velocity reversal can results in the
emergence of a circulation cell. For this to occur, the reversed
velocity magnitude is crucial. No circulation cell is in the jet flow
presented in Figs. 1 and 2. In contrast, the Marangoni flow [15] pro-
duces circulation cells. Fig. 3 depicts the pattern of air–water cen-
trifugal convection in the sealed cylindrical container rotating
around its axis. The bottom (top) disk is cold (hot) and the sidewall
is adiabatic.

The air (water) occupies the region 0 < r < 0.5 (0.5 < r < 1). The
arrow indicates the flow and Marangoni forcing direction. The light
(dark) streamline contours depict to the clockwise (anticlockwise)
meridional circulation. With no Marangoni forcing, the water flow
is one-cellular. The Marangoni effect causes flow reversals and the
development of the three cells of water motion [15].

In Kirdyashkin’s case, both the vertical and horizontal near-wall
jets likely cause flow reversals, but the horizontal jets only result in

Fig. 1. Visualization shows the velocity reversal in the jet-driven flow [17].

Fig. 2. Explanation of the flow shown in Fig. 1 [18].
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