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a b s t r a c t

A multiple-relaxation-time lattice Boltzmann model with an off-diagonal collision matrix is adopted to
predict the effective thermal conductivities of anisotropic heterogeneous materials with anisotropic com-
ponents. The half lattice division scheme is used to handle the internal boundaries to guarantee the heat
flux continuity at the component interfaces. Accuracy of the model is confirmed by comparing with
benchmark results and existing simulation data. The present method is then employed to predict the
transverse and longitudinal effective thermal conductivities of three-dimensional four-directional
(3D4D) braided composites. Experiments based on the Hot Disk method are also conducted to obtain
the transverse and longitudinal effective thermal conductivities of the materials. The numerically pre-
dicted results fit the experiment data well. Then, influences of fiber volume fractions, interior braiding
angles and interface thermal contact resistance on the effective thermal conductivities of 3D4D braided
composites are studied. The results show that the effective thermal conductivity along the transverse
direction increases with the fiber volume fraction and interior braiding angle; while the longitudinal
one increases with the fiber volume fraction but decreases with the increasing interior braiding angle.
A larger interface thermal contact resistance leads to a smaller effective thermal conductivity. Besides,
for anisotropic materials, the effective thermal conductivity obtained by the periodic boundary condition
is different from that obtained by the adiabatic boundary condition.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The three-dimensional four-directional (3D4D) braided com-
posites are anisotropic heterogeneous materials composed of the
matrix and braiding yarns. They have been widely applied in aero-
nautics and astronautics due to their high strength and low density
[1]. The braiding yarns, one of the components in 3D4D braided
composites, are anisotropic with different thermal conductivities
along the transverse and longitudinal directions [2,3]. Heat transfer
in each anisotropic component has preferable directions, and it
needs a thermal conductivity matrix to fully describe the local
property of components. Besides, the continuity of the normal heat
flux and temperature should be ensured at the component inter-
faces. The thermal properties of the 3D4D braided composites are
anisotropic along the transverse and longitudinal directions. For
such anisotropic heterogeneous materials with anisotropic compo-
nents, the effective thermal conductivity along the specified direc-
tion is an important parameter that can quantitatively evaluate the

heat transfer capacity of composites. Here, several concepts are
emphasized to avoid confusion. The heterogeneous material refers
to a composite material with different components, and the
homogenous material refers to the material with only one compo-
nent. Anisotropic heterogeneous materials with anisotropic com-
ponents refer to the composite materials of which the overall
thermal properties are anisotropic and their components are also
anisotropic. Anisotropic heterogeneous materials with isotropic
components refer to the composite materials of which the overall
thermal properties are anisotropic but their components are
isotropic.

The lattice Boltzmann method (LBM) is an effective approach to
solve the Navier–Stokes equations. It has been widely used to solve
the conventional fluid flows [4,5], fluid flows in porous mediums
[6,7], multiphase flows [8–10], and recently has been applied to
investigate the effect of magnetic field on the behavior of the nano-
fluid [11,12]. Moreover, the LBM has also been used successfully in
solving energy transport or mass diffusion problems. Xuan et al.
[13] investigated the mass transfer process of volatile organic com-
pounds in porous media based on the LBM. Chen et al. [14] adopted
the LBM to predict the effective diffusivity of the porous gas
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diffusion layer in fuel cell. Wang et al. [15] proposed a LB algorithm
to deal with the fluid–solid conjugate heat transfer problem, which
can ensure the heat flux and temperature continuity at the inter-
faces. As for the heterogeneous materials with isotropic compo-
nents, many studies have been conducted to predict their
effective transport property. In particular, Wang et al. [16] pro-
posed a LB model to predict the effective thermal conductivity
for granular structures, netlike structures and fibrous structure
composite materials. In the model of Wang et al. [16], the original
LB Bhatnagar–Gross–Krook model was adopted, which only has a
single-relaxation-time coefficient without sufficient parameters
to fully describe the anisotropic heat transfer in anisotropic mate-
rials. Several studies have been conducted on the solution of aniso-
tropic heat transfer equation using the LBM. Zhang et al. [17,18]
proposed a LB model in which the relaxation time coefficients
are assumed to be directionally dependent and this model ensured
that the collision is mass-invariant. Ginzburg et al. [19] presented
two LB models, the equilibrium-type and the link-type models, to
solve the anisotropic heat transfer problems. But these models all
suffer the instability and poor application flexibility [20]. Recently,
the multiple-relaxation-time (MRT) LB model has been adopted for
heat transfer due to its higher stability and accuracy than the
single-relaxation-time model [21,22]. Yoshida and Nagaoka [20]
developed a MRT LB scheme using a collision operator with off-
diagonal components, making it possible to solve the anisotropic
heat transfer problems, but it is only suitable for the homogeneous
materials. As for the heterogeneous materials with anisotropic
components, it will lead to heat flux discontinuity at the interfaces
if the heat transfer at the interface is not properly treated [23].

There have been some studies using finite element methods to
predict effective thermal conductivity of 3D4D braided composites
[3,24,25]. However, it is quite difficult for the finite element
method to consider the thermal contact resistance at the internal
interface and to predict the effective thermal conductivity of
heterogeneous materials with randomly distributed anisotropic
components, such as needled C/SiC composites [26]. The LBM is
particularly suitable for the heat and mass transfer in complex
materials and has the ability to deal with the thermal contact resis-
tance at the internal interface, and thus the present study focuses
on developing a LB model for 3D4D braided composites with aniso-
tropic components. The developed LB model can be also adopted to
predict the effective thermal conductivity of the needled C/SiC
composites. Besides, the previous numerical results based on the

finite element method were not compared with the corresponding
experimental data, and in the present study, such comparisons are
also conducted.

The MRTmodel developed by Yoshida and Nagaoka [20] and the
treatment for the internal interfaces should be combined to deal
with such heterogeneous materials with anisotropic components.
The single-relaxation-time LBM adopted by Wang et al. [15] is only
suitable for the materials with isotropic components, and it has
been used to predict the effective thermal conductivity of the iso-
tropic heterogeneous materials with isotropic components [27]
and the directional effective thermal conductivity of the anisotro-
pic heterogeneous materials with isotropic components [28].

In the present paper, a multiple-relaxation-time LB model com-
bined with the ‘half lattice division scheme’ treatment for internal
interfaces is adopted to predict the effective thermal conductivity
of the anisotropic heterogeneous materials with anisotropic com-
ponents. The ‘half lattice division scheme’ first proposed by Wang
et al. [15] is to handle the internal interfaces between the isotropic
components. In the present paper, it is extended to deal with the
internal interfaces between the anisotropic components. With
the ‘half lattice division scheme’ method, the temperature and heat
flux can be directly obtained from the local temperature distribu-
tion functions without the calculations of the finite difference,
which is important for the continuity of temperature and heat flux
at the interfaces (will be discussed at Section 2.3). In addition, to
verify the reasonability and accuracy of the present method, sev-
eral benchmarks are simulated, and then experiments based on
the Hot Disk method are conducted to measure the effective ther-
mal conductivity of 3D4D braided composites (Section 4.3). The
influences of the fiber volume fraction, interior braiding yarns
and interface thermal contact resistance on the effective thermal
conductivity are also examined in this study (Section 5).

2. Numerical method

2.1. Governing equation

The governing equations for anisotropic heat conduction in
multicomponent systems, e.g., the matrix and reinforced fibers,
without any heat source can be expressed as

@Tm
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¼ @

@xi
ðDijÞm
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Nomenclature

a, b, m, h characteristic length of the unit cell, mm
c pseudo sound speed, m/s
cp, qcp heat capacity J/(kg�K), volumetric heat capacity, J/(m3�K)
D, d thermal diffusivity, m2/s, diameter of fiber, mm
e discrete velocity
f, feq temperature distribution function, equilibrium distribu-

tion function
L thicknesses of materials, m
m moment vector
M transformation matrix
q heat flux, W/m2

S relaxation time matrix
t, dt, dx time, time step, space step
T temperature, K
X collision matrix
b, c oblique angle, interior braiding angle, �
e, j constants, e = 2 j, and j = 1/8
/ volume fraction

k thermal conductivity, W/(m�K)
s relaxation time coefficient

Subscript
a direction of the temperature distribution function
m matrix
f fiber
i, j number index
x, y, z direction index
a directions opposite to a
g, f principle axis of heat conduction
e effective
T transverse
L longitudinal
fy fiber volume fraction of braiding yarn
ya yarn volume fraction of the unit cell
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