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a b s t r a c t

A novel evaporation model for multi-component spherical drop has been developed by analytically
solving the Stefan–Maxwell equations under spherical symmetry assumptions. The evaporation rate
predicted by the new model is compared with the predictions obtained by previous models based on
Fick’s law approximation, under steady-state isothermal conditions for a wide range of gas and drop
temperatures and compositions. The effect of non-isothermal conditions are considered in a simplified
way, through the effect of temperature on the reference value of gas density and mass diffusion
coefficients. The Fick’s law based models are found to generally under-predict the total evaporation rate,
particularly at higher evaporation rate conditions.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In many applied fields, like spray combustion, spray painting,
aerosol for medical applications, etc., the evaporation of a liquid
drop floating in a gaseous atmosphere is a phenomenon of para-
mount importance. Since the early work of Maxwell on this subject
[1], back in 1877, a relatively vast literature has become available,
reporting the valuable findings that helped to increase our
understanding of the complex phenomena involved. During the
evaporation of a liquid drop different simultaneous mechanisms
of heat (conduction, convection and possibly radiation) and mass
(convection and diffusion) transfer, between the drop surface and
the surroundings, influence and drive the drop evaporation (see
[2] for a detailed description).

A wide literature is available on the modelling of the above
mentioned phenomena, (see for example [3,4] for a review), partic-
ularly for a single component drop, and such models are often used
to simulate evaporating spray, as part of CFD methodologies,
although detailed models based on single drop analysis have to
be simplified to be CPU efficient.

A far less amount of literature is available on the more complex
problem of evaporation from a multi-component droplet, since in
this case the simultaneous diffusive–convective mass transfer from
the drop to the gas cannot be simply modelled and/or experimen-
tally studied. The Stefan flow combined with the differential diffu-
sion of each component into the gas–vapour mixture renders the

problem much more complex than that relative to single
component drops. A typical approach to this problem is to model
the diffusive mass flux of each component by the well-known
Fick’s law, which however would exactly hold only for binary
diffusion (i.e. single component vapour diffusing in a gas) [5].

The available studies on multi-component diffusion from
spherical drops are based on the simplified extension of single
component models (namely the Fuchs’ model [6] for evaporation
in a still gas and the Abramzon and Sirignano extension [7] to
Re > 0), with different simplifying conditions. A typical simplifica-
tion is to consider the vapour mixture as a single component,
defining an average diffusive coefficient into the gaseous atmo-
sphere, that can be done in different ways. For example, Sazhin
et al. [8] proposes to evaluate the diffusion coefficient of the mean
vapour mixture in air according to the Wilke formula [9], which
takes into account the physical properties of each species.

A slightly more detailed numerical model accounts for the
difference between the diffusion coefficient of each species, thus
evaluating the evaporation rate of each component [10]. Another
similar approach was suggested by Brenn et al. [11] to account
for differential diffusion of each component, namely the applica-
tion of the single component model using an equivalent drop
radius for each component, based on the volume composition of
the real drop. Recently, Tonini and Cossali [12] proposed an analyt-
ical model of multi-component drop evaporation accounting for
the inter-species mass diffusion in the gaseous mixture and
suggested a simpler model, based on the single-component
analogy, with a new definition of the mean mass diffusion coeffi-
cient, which results were found to be in good agreement with
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the more accurate solution. Ebrahimian and Habchi [13] developed
a multi-component drop evaporation model, which proposes a
new expression to evaluate the Stefan velocity based on [14],
implementing it in a numerical code to compare the predictions
with previous models and with available experimental results.
The model was used to investigate the effect on drop evaporation
rate of various model assumptions, like the infinite thermal con-
ductivity assumption [3], the physical property averaging [15],
the effect of high pressure and temperature conditions [16] and
of gravity and natural convection [17–20].

All the previously mentioned models are based on the Fick’s law
approximation, although a more accurate way to cope with multi-
component diffusion is through the so-called Stefan–Maxwell
equations (see [5] for a comprehensive analysis), that can account
for the mutual interaction among the mass fluxes of all the compo-
nents. The major complexity of this approach comes from the fact
that a system of coupled differential equations (one for each com-
ponent) must be solved, together with continuity equations.

The next sections describe the mathematical formulation of a
new model for drop evaporation based on the analytical solution
of Stefan–Maxwell equations, under some simplifying hypotheses.
A comparison with results obtained with previous models are
reported. Finally the main conclusions arisen from the present
investigation are briefly summarised.

2. Model equations

Steady multi-component diffusion can be correctly modelled by
the Stefan–Maxwell (S–M) equations, that can be written, for a
mixture of nþ 1 species, neglecting Soret effect and diffusion due
to pressure gradients and to external force, as [5]:

$yðpÞ ¼
Xn
k¼0

1
cDpk

yðpÞNðkÞ � yðkÞNðpÞ
� �

ð1Þ

where c is the molar density, Dpk ¼ Dkp are the binary diffusion coef-
ficient of p-component into k-component, yðpÞ is the molar fraction
of p-component, NðpÞ is the molar flux of the p-component, which is
related to the mass flux by nðpÞ ¼ NðpÞMmðpÞ where MmðpÞ is the
molar mass of the p-component.

Considering a multi-component spherical drop evaporating in a
gaseous atmosphere, spherical symmetry assumption allows to
retain only the radial component of the species molar fluxes

(NðkÞ
r ). Assuming a still drop surface and a neglectful gas diffusion

into the liquid drop, the gas flux (Nð0Þ
r ) is necessarily nil

everywhere, then:

NðkÞ
r ¼ NðkÞ

ev
4pr2

for k ¼ 1 . . .n

Nð0Þ
r ¼ 0

where NðkÞ
ev is the molar evaporation rate of the k-component (again

mðkÞ
ev ¼ NðkÞ

evMmðkÞ, where mðkÞ
ev is the evaporation mass rate).

With the change of variable f ¼ R0
r and introducing the

non-dimensional molar evaporation rate N̂ðkÞ
ev ¼ NðkÞ

ev
4pR0cDref

, where

Dref is a suitable reference value for the diffusion coefficients,
Eq. (1 ) yields the ODE system:
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¼ �N̂ðTÞ

ev
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� � ð2Þ

where upk ¼ Dref

Dpk
and mðkÞ ¼ NðkÞ

evPn

p¼1
NðpÞ
ev
. Since mð0Þ ¼ 0 and

Pn
k¼0y

ðkÞ ¼ 1

and setting upp � u0p � up0 the system (2) can be written in matrix
form as:

d
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Nomenclature

A coefficient matrix (–)
B source term vector (–)
C0 constant of integration vector (–)
c molar density (kmol=m3)
D species diffusion coefficient (m2=s)
I unit matrix (–)
mev evaporation rate (kg=s)
Mm molar mass (kg=kmol)
n mass flux vector (kg=m2s)
N molar flux vector (kmol=m2s)
Nev molar evaporation rate (kmol=s)
Nr molar flux vector radial component (kmol=m2s)
r radial coordinate (m)
R universal gas constant (J=kmol K)
R0 drop radius (m)
T temperature (K)
y molar fraction (–)

Greek symbols
e mass evaporation rate fraction (–)
f non-dimensional coordinate (–)

m molar evaporation rate fraction (–)
q mass density (kg=m3)
u species diffusion coefficient ratio (–)
v mass fraction (–)
W molar fraction vector (–)

Subscripts
ev evaporation
ref reference
s drop surface
v vapour
1 ambient conditions

Superscripts
F Fick model
j; k;n; p indexes
m mixture
T total
^ non-dimensional
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