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a b s t r a c t

The limitations of the microfabrication technology do not allow producing perfectly smooth microchan-
nels. Hence, exploring the influences of roughness on transport phenomena in microtubes is of great
importance to the scientific community. In the present work, consideration is given toward the corru-
gated roughness effects on fully developed electroosmotic flow and heat transfer in circular microtubes.
Analytical solutions based on perturbation technique are presented for the problem assuming a low zeta
potential under the constant heat flux boundary condition of the first kind. It is revealed that higher val-
ues of the corrugation number and relative roughness give rise to smaller Nusselt numbers. Since the
same is true for the mean velocity, one may conclude that the roughness effects on the hydrodynamic
and thermal features of electroosmotic flow are negative. Further, the Nusselt number is found to be a
decreasing function of the Joule heating rate and an increasing function of the dimensionless Debye-
Hückel parameter.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Electroosmosis is one of the primary electrokinetic phenomena
which was discovered more than two centuries ago [1]. It refers to
the flow of an ionic solution tangential to an electrified surface
under the application of an electric field. Ionic species within a
charged interfacial layer (also known as the electrical double layer,
EDL) are forced to move by virtue of the external electric field,
which in turn actuates the motion of the solvent molecules
through viscous interaction, resulting in so-called electroosmotic
transport.

The trace of the pertinent literature indicates that the first accu-
rate expression for electroosmotic velocity was derived by Smolu-
chowski [2] in 1903. Two decades later, Debye and Hückel [3]
determined the ionic distribution in solutions of low electrical
potential, by means of a linear approximation of the Boltzmann
distribution. This paved the way for the development of analytical
solutions for electroosmotic flow (EOF) in flat and circular channels
by Burgreen and Nakache four decades later [4]. They afterward
extended the solutions to account for high surface potentials [5].

Rice and Whitehead [6] investigated fully developed EOF in a nar-
row cylindrical capillary assuming low zeta potentials. Levine et al.
[7] extended Rice and Whitehead’s work to high zeta potentials by
means of an approximation method.

More recently, Tsao [8] examined the hydrodynamic aspects of
EOF in a microannulus, using the Debye-Hückel linearization. His
work was extended to high zeta potentials by Kang et al. [9], utiliz-
ing an approximate method. Closed form solutions for fully devel-
oped EOF in rectangular and semicircular microchannels were
presented by Yang [10] and Wang et al. [11], respectively. Xuan
and Li [12] developed semi-analytical solutions for electrokinetic
flow in microchannels with arbitrary geometry and arbitrary dis-
tribution of wall charge.

Despite the hydrodynamic features being well-explored, the
study of the thermal aspects of EOF is recent. The pioneering stud-
ies in this scope were performed by Maynes and coworkers and
include presenting closed form solutions for thermally fully devel-
oped EOF in slit and circular channels of small zeta potential with
[13] and without [14] considering viscous heating effects. They
thereafter extended their works to account for high zeta potentials,
albeit numerically [15]. Subsequently, Chakraborty [16] obtained
analytical solutions of Nusselt number for thermally fully devel-
oped flow in microtubes under a combined action of electroos-
motic forces and imposed pressure gradients. Chen [17]
performed the same analysis for a slit channel. The viscous heating

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.089
0017-9310/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: hkeramati@mech.sharif.edu (H. Keramati), a.sadeghi@eng.uok.

ac.ir (A. Sadeghi), saman@sharif.edu (M.H. Saidi), suman@mech.iitkgp.ernet.in
(S. Chakraborty).

International Journal of Heat and Mass Transfer 92 (2016) 244–251

Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2015.08.089&domain=pdf
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.089
mailto:hkeramati@mech.sharif.edu
mailto:a.sadeghi@eng.uok.ac.ir
mailto:a.sadeghi@eng.uok.ac.ir
mailto:saman@sharif.edu
mailto:suman@mech.iitkgp.ernet.in
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.08.089
http://www.sciencedirect.com/science/journal/00179310
http://www.elsevier.com/locate/ijhmt


effects on the thermal characteristics of the fully developed mixed
flow in slit and circular microducts were analyzed analytically by
Sadeghi and Saidi [18] and Yavari et al. [19], respectively. Yavari
et al. [20] derived closed form solutions for the hydrodynamic
and thermal characteristics of combined electroosmotic and pres-
sure driven flow in a microannulus. Exactly the same, but this time
for a rectangular geometry, was done by Sadeghi et al. [21]. The
mixed flow characteristics in triangular microchannels were inves-
tigated by Liao et al. [22] through a Galerkin-based numerical
approach. In a recent study, Vocale et al. [23] paid attention to
the problem of EOF heat transfer in elliptical microchannels under
axially constant heat flux boundary condition.

The walls of any conduit show some degree of roughness
depending on the manufacturing process. Since the surface condi-
tions may affect the flow characteristics to some extent, it is crucial
to account for roughness effects in any fluid flow analysis. This is
more essential in dealing with microflows, because, as the flow
cross section gets smaller the influences of wall phenomena grow
significantly. This fact has motivated some researchers to investi-
gate the roughness effects on EOF [24–28]. However, no attention
has been given toward the influences of the surface conditions on
the associated heat transfer physics, despite recent advancements
in using electroosmotic-based micro cooling systems [29–31] that
dramatically raise the need for such analyses. The successful uti-
lization of EOF for cooling purposes also draws attention to the
thermo-fluidic transport in circular microchannels, as an essential
part of microchannel heat sinks [32–35]. In this respect, in spite of
considerable attention to the electroosmotic flow and heat transfer
in circular microducts, this geometry has been ignored in the stud-
ies of the roughness effects. In the present work, the effects of
roughness on both the hydrodynamic and thermal features of
EOF through circular micropipes are being studied. For a better
tractability of the problem, the surface roughness is modeled by
considering a corrugated channel surface. The flow is assumed to
be both hydrodynamically and thermally fully developed and the
thermal boundary condition is assumed to be the constant heat
flux of the first kind, H1, which refers to a constant heat flux in
the axial direction and a constant temperature in each cross sec-
tion [36]. Analytical solutions are obtained for the electrical poten-
tial, velocity, and temperature fields utilizing the perturbation
technique, assuming small amounts of the relative roughness. To
the best of our knowledge, this is the first report on analytical solu-
tions for heat transfer in EOFs with surface roughness effects taken
into consideration. A complete parametric study is then performed
by putting emphasize on the heat transfer aspects and it is shown
that roughness has unfavorable effects on the transport phenom-
ena of electroosmotic flow.

2. Problem formulation

Steady, laminar, hydrodynamically and thermally fully devel-
oped electroosmotic flow inside a circular microtube with a rough
surface is considered. The geometry of the problem is shown
schematically in Fig. 1. The surface roughness is assumed to be
approximately modeled by considering a corrugated wall of the
form rw ¼ Rþ Re sinðMhÞ, where R is the mean radius of the micro-
tube and M stands for the number of corrugations. Moreover, e
denotes the relative roughness. Based on the experimental data
for the roughness amplitude of glass microchannels [37], this
may take values of the order 0.01 assuming a channel of radius
10 lm. The electroosmotic-based microchannel heat sinks usually
are made from silicon which may result in significantly rough sur-
faces; we here assume the values of up to 0.06 for e based on the
experimental data of Qu et al. [38]. Following the findings of
Sadeghi et al. [39], the thermophysical properties are assumed to

be computed based on the bulk mean temperature for the
temperature-dependent influences to remain negligible. The zeta
potential of the channel is not only constant and uniform but also
is low enough to permit the usage of the Debye-Hückel lineariza-
tion. In addition, it is assumed that the effect of temperature vari-
ations on the potential distribution within the EDL may be
neglected [40]. The thermal features are analyzed considering the
Joule heating effects and assuming the H1 thermal boundary
conditions.

2.1. Electrical potential distribution

The combination of externally applied potential U and EDL
potential w will constitute the electrostatic potential field u in
the channel. The former is only dependent upon the axial direction
so that

uðr; h; zÞ ¼ UðzÞ þ wðr; hÞ ð1Þ
The relationship between the electrostatic potential and the net

electrical charge density qe is given by the Poisson equation:

r2u ¼ �qe

�
ð2Þ

where e is the permittivity constant of the solution. In general, the
connection between the electrostatic potential and the electric
charge density should be described by the Nernst-Planck equations.
However, at the hydrodynamically developed conditions, the spatial
distribution of the electric charge density is expressed by the Boltz-
mann equation, despite the fact that it assumes the thermodynamic
equilibrium [41]. This may be attributed to the orthogonality of the
velocity vector and the ion concentration gradient at the fully devel-
oped conditions. Utilizing the Boltzmann distribution, the electric
charge density for a solution containing N ionic species becomes
[42]:

qe ¼ e
XN
i¼1

zini0e
� eziw
kBTav

� �
ð3Þ

where e represents the proton charge, zi and ni0 are the valence
number and concentration of the ith species at neutral conditions,
respectively, kB is the Boltzmann constant, and Tav is the average
absolute temperature over the channel cross section. Substituting
the charge density expression into the Poisson equation, and con-
sidering a constant voltage gradient in the z-direction, Eq. (2)
reduces to the Poisson–Boltzmann equation

@2w
@r2

þ 1
r
@w
@r

þ 1
r2

@2w

@h2
¼ � e

�

XN
i¼1

zini0e
� eziw

kBTav

� �
ð4Þ

Eq. (4) is nonlinear and cannot be solved analytically; neverthe-
less, for small potentials, it can be linearized by replacing the expo-
nential terms with their Taylor series and discarding all the terms
of the order w2 and higher. This approximation, first introduced by
Debye and Hückel [3], has been shown to be valid for zeta poten-
tials of up to 50 mV [39]. Making use of the electroneutrality con-
ditions in the bulk where w = 0, the linearized form of the Poisson–
Boltzmann equation in dimensionless form becomes

r�2w� ¼ @2w�

@r�2
þ 1
r�

@w�

@r�
þ 1
r�2

@2w�

@h2
¼ K2w� ð5Þ

where w� ¼ w=f, r� ¼ r=R, and K ¼ R=kD is the dimensionless Debye-

Hückel parameter with kD ¼ PN
i¼1ni0e2z2i =�kBTav

� ��1=2
as the Debye

length, a measure of the extent of EDL. The boundary conditions for
the dimensionless electrical potential equation are as follows

w� ¼ 1 at r� ¼ 1þ e sinðMhÞ ð6Þ
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