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a b s t r a c t

This paper examines the degree of irreversibility, or thermodynamic nonideality, in a tree-shaped flow
network with a constant wall heat flux. The tree network is a dichotomic and homothetic structure,
and a fully developed laminar flow of Newtonian and non-Newtonian power law fluids is assumed.
We investigate (i) the characteristics of the tubes composing the network (i.e., variation in the homoth-
etic ratios of length and diameters, as well as variation in wall permeability of tubes), (ii) the existence of
blocked (obstructed) tubes in the network, (iii) fluid characteristics, and (iv) frictional and thermal effects
on entropy generation. The influence of parameters like the fluid behavior index, Reynolds number,
Nusselt number, homothety ratios for length and diameters, and wall permeability is hence evaluated.
Finally, the degree of thermodynamic irreversibility associated to tree networks designed for a maximum
flow access is determined.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Tree-shaped flow networks are omnipresent in Nature and
cover every scale from the network of tiny tubes in plants and
mammals, to rivers basins and deltas [1–4]. This design finds also
application in engineered systems [5–13]. Biomimetic microvascu-
lar networks for efficient fluid transport are used in several techno-
logical applications.

Research on tree flow structures, though dating back one cen-
tury [1–3], is still a topic of great interest due to their widespread
applications. In complex biological organism, tree-shaped flow
networks serve a fundamental purpose of transport functional flu-
ids to tissues. Within this context, many crucial functions are per-
formed, such as delivery of nutrients and removal of waste, and
damage inhibition and repair. The pioneering work of Hess [2]
and Murray [3] analyzed the distribution of blood vessel sizes of
circulatory system. They found that the cube of the diameter of
the parent tube equals the sum of the cubes of the diameters of
both daughter tubes. This third-power rule (Hess–Murray law)
was justified based on the principle of minimum power [3]. Bejan
and co-authors [1,14,15] show that the best flow path that con-
nects one point with infinity of points (line, area, or volume) is a
network bifurcating on several levels. They relied on the construc-
tal law to derive Hess–Murray law (i.e., minimization of the
hydraulic resistance subject to the total volume constraint) and
they concluded that the lengths of the daughter tubes also obey
to a third-power rule. These studies consider that the flow of fluid

through the tubes is described by the Hagen–Poiseuille equation
(creeping flow). As mentioned, tree-shaped flow structures are also
of common appearance in inanimate flow systems such as river
basins and deltas. Empirical evidences led geomorphologists to
propose a number of scaling laws that indicate that some proper-
ties of river basins are invariant [16,17]. These geophysical net-
works also generate their area-to-point flow configuration in
accordance with minimization of flow resistance subject to the vol-
ume constraint [14,15].

For creeping flow or Stokes flow through tubes, viscous dissi-
pation occurs due to the existence of the frictional dissipation
arising from the fluid-walls contact, and due to the internal dis-
sipation associated with the mechanical power needed to trans-
port the fluid through the tubes. The generation of entropy may
occur due to viscous dissipation and heat transfer. The Gouy–
Stodola theorem states that the entropy produced by irre-
versibility in a process is proportional to the loss of exergy
[18,19]. Therefore, a decrease of entropy generation means a
decrease of irreversibility (or less loss of exergy), and the most
efficient processes achieve the minimum entropy generation
rates. The improvement of performance of a system means a
design that provides a minimum entropy generation rate. The
entropy generation minimization method [18] is a well-
established procedure to minimize the thermodynamics irre-
versibilities of a system subject to a specified set of constraints,
and to compare different designs. An important number of
researches deal with the best design of systems based on
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minimal entropy generation principle (see, for example the
review papers of [20–23]). Studies connecting the flow configu-
ration of tree networks to their entropy production are pre-
sented in Refs. [24–26].

In real flows, not all fluids obey a Newtonian stress–strain rela-
tionship: body fluids (e.g., blood) and fluids used in industrial
applications often exhibit non-Newtonian (non-linear) behavior

Fig. 1. Entropy generation number due to heat transfer, NS_heat, versus the fluid
behavior index, x, Nusselt number, Nu, and dimensionless quantity hQ: n = 10;
m = 2; Nu = 0.1 (------ hQ = 0.01, __..__..__ hQ = 0.10, __.__.__ hQ = 1.00, __ __ __ hQ = 10.00,
______ hQ = 100.00).

Fig. 2. Entropy generation number due to heat transfer, NS_heat, versus the fluid
behavior index, x, Nusselt number, Nu, and dimensionless quantity hQ: n = 10;
m = 2; Nu = 1.0 (------ hQ = 0.01, __..__..__ hQ = 0.10, __.__.__ hQ = 1.00, __ __ __ hQ = 10.00,
______ hQ = 100.00).

Fig. 3. Entropy generation number due to heat transfer, NS_heat, versus the fluid
behavior index, x, Nusselt number, Nu, and dimensionless quantity hQ: n = 10;
m = 2; Nu = 10.0 (---- -- hQ = 0.01, __..__..__ hQ = 0.10, __.__.__ hQ = 1.00, __ __ __

hQ = 10.00, ______ hQ = 100.00).

Fig. 4. Entropy generation number due to fluid friction, NS_fluid, versus the fluid
behavior index, x, Metzner–Reed Reynolds number, ReDx, and dimensionless
quantity h/Q: n = 10; m = 2; ReDx = 0.010 (———— h/Q = 0.01, __..__..__ h/Q = 0.10,
__.__.__ h/Q = 1.00, __ __ __ h/Q = 10.00, ______ h/Q = 100.00).

Fig. 5. Entropy generation number due to fluid friction, NS_fluid, versus the fluid
behavior index, x, Metzner–Reed Reynolds number, ReDx, and dimensionless
quantity h/Q: n = 10; m = 2; ReDx = 0.095 (———— h/Q = 0.01, __..__..__ h/Q = 0.10,
__.__.__ h/Q = 1.00, __ __ __ h/Q = 10.00, ______ h/Q = 100.00).

Fig. 6. Entropy generation number due to fluid friction, NS_fluid, versus the fluid
behavior index, x, Metzner–Reed Reynolds number, ReDx, and dimensionless
quantity h/Q: n = 10;m = 2; ReDx = 1.000 (----- - h/Q = 0.01, __..__..__ h/Q = 0.10, __.__.__

h/Q = 1.00, __ __ __ h/Q = 10.00, ______ h/Q = 100.00).
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