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a b s t r a c t

In this paper, the modified polynomial expansion method is developed to solve problems of identifying
the time dependent heat source, in which an inverse problem is encountered. Aimed at this problem, the
variation of variables is adopted to eliminate the unknown heat source and obtain a six-line boundary
value problem. As compared with the conventional four-line boundary value problem, the six-line
boundary value problem is quite hard to be dealt with. After the unknown non-homogeneous term being
eliminated, the polynomial expansion method is introduced to discretize the time and space fields,
respectively. Then, the distribution of temperature is expressed as a linear superposition of polynomial
functions. After that, a characteristic length concept is adopted to resolve the ill-posed matrix problems
arising in those conventional polynomial expansion methods. The desired heat source function can be
obtained by putting the solution of the six-line boundary value problem into differential operations.
Several numerical experiments with designed examples are included to validate the accuracy and effec-
tiveness of the proposed approach.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The inverse heat source problems are solving the heat
conduction equation with unknown heat source. It is very difficult
to identify the heat source due to the ill-posedness of the inverse
problem in nature [1,2]. Since Stolz [3] first gave a numerical
solution of the inverse heat conduction problem, there have been
many applications in different scientific and engineering fields
after his work. There are also various types of inverse problems
for heat conduction equation. For example, Masood and Yousuf
[4] used the finite difference method to reconstruct the initial
temperature distribution; Vakili and Gadala [5,6] estimated the
missing boundary temperature or heat flux by using the particle
swarm optimization; Tan and Liu [7] used the collocation meshless
method to solve the inverse geometry design problem; Molavi
et al. [8] used the modified Levenberg–Marquardt method to
identify the thermal parameters. In this paper, we focus on the
inverse heat source problem aiming to recover the unknown time
dependent heat source.

There were many studies to identify different types of heat
sources. Cannon and Duchateau [9] estimated the nonlinear

temperature dependent heat source. Savateev and Duchateau
[10] and Borukhov and Vabishchevich [11] recovered the heat
sources, which are functions of space and time, and the heat
sources are additive or separable on space and time axes; however,
they only gave a priori estimate of numerical error in [11]. The
method of fundamental solutions (MFSs) can solve the homoge-
neous heat conduction problems. Mierzwiczak and Kołodziej [12]
applied the MFS associated with Laplace transformation to identify
the heat source, which is function of space and time. Some
investigators reconstructed the time- or space-dependent heat
source, such as Farcas and Lesnic [13], Ling et al. [14], Shi et al.
[15], Yan et al. [16], and Yang et al. [17], and the regularization
technique was introduced to stabilize their algorithms.

For solving an inverse problem, we usually need extra measure-
ment data. To recover the time-dependent heat source, we choose
some measure points and record the temperature history at these
points. Traditionally, the problem can be reduced into a Volterra
integral equation of the first kind; however, it is also ill-posed.
The numerical solution can be obtained by solving the above inte-
gral equation with some regularization techniques. Maalek Ghaini
[18] proved the existence, uniqueness and stability of this problem,
but he did not give numerical procedures and demonstrated
examples.

There are also many researches about reconstructing the
time-dependent source. Huang and Shih [19] estimated the forcing
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term of the Euler–Bernoulli beam. Marin [20] presented the MFS to
identify the heat source of the heat conduction equation in the
steady state. Marin et al. [21] proposed the boundary element
method to solve the inverse problem in magnetic resonance imag-
ing gradient coils. Mera et al. [22] detected the super-elliptical
inclusions that are applied in tomography. Wen [23] used the
MFS associated with the Tikhonov regularization method to
estimate the heat source and partial initial temperature. Liu [24]
reconstructed a past-time dependent heat source by the
Lie-group shooting method. Yeih and Liu [25] constructed a
three-point boundary value problem and solved the resultant sys-
tem by a two-stage Lie-group shooting method. Liu [26] proposed a
self-adaptive Lie-group shooting method to recover the initial con-
dition or the heat source. In his approach, no extra measurement
data are needed. Yang et al. [27] transferred the inverse heat source
problem into an optimal control problem. Recently, Kuo et al. [28]
have proposed a modified polynomial expansion method to solve
the one-dimensional inverse heat source problem. By considering
the characteristic length, the proposed method can reach a conver-
gent solution and greatly improve the stability of the algorithm.

In the literature reviewed above, we can see that many investi-
gators solved the inverse heat source problem by using various
approaches, but there are still stability and multi-dimensional
problems to be overcome. Some researchers assumed the function
type with some unknown coefficients to obtain the unknown heat
source function and the unknown coefficients can be yielded by
the minimization technique, but the function type would influence
the estimating results. In addition, some researchers might trans-
form the problems into an integral equation; however, it is still dif-
ficult to be solved due to the ill-posedness of the integral equation.
Besides, some investigators introduced the variable transformation
and obtained a three-point boundary value problem, but it is diffi-
cult to solve the resultant problem by the traditional mesh-based
methods. The Tikhonov regularization technique is usually used
to reduce the ill-posedness of the inverse problems, but it needs
extra computation to choose the regularization parameter by using
L-curve or iteration methods, which is time consuming.

The concept of the characteristic length for series solution was
first proposed by Liu [29,30]. In his papers, the conventional Trefftz
basis functions are scaled by a factor which is the so-called charac-
teristic length and plays a major role in reducing the condition
number of the resultant linear system and improving the accuracy
for both the direct and indirect Trefftz methods. We can find that
the basis functions in the polar coordinate can be transformed into
the polynomial functions in the Cartesian coordinate. Therefore,
the basis functions for Laplace equation can be considered as a
special polynomial expansion with the characteristic length.
Later, Liu and Atluri [31] solved the interpolation problems by
using the characteristic length. Liu [32] also proposed a polynomial

expansion method with multi-scale characteristic length for
solving the interpolation problems.

In this paper, we develop a modified polynomial expansion
method to recover the time dependent heat source together with
the temperature distribution in the two-dimensional heat
conduction equation. The present approach is efficient because
the characteristic length implies the regularization. Thus, we can
select the value easily without extra computation. Several numerical
examples will be provided to validate the present approach and
demonstrate the accuracy and stability of the present method.

2. Six-line boundary value problem

Let us consider a two-dimensional heat conduction problem:

@uðx; y; tÞ
@t

¼ @
2uðx; y; tÞ
@x2 þ @

2uðx; y; tÞ
@y2 þ HðtÞ;

0 < x < lx; 0 < y < ly; 0 < t 6 tf ;

ð1Þ

uðx; y;0Þ ¼ f ðx; yÞ; ð2Þ

uð0; y; tÞ ¼ F0ðy; tÞ; uðlx; y; tÞ ¼ Flðy; tÞ;
uðx;0; tÞ ¼ G0ðx; tÞ; uðx; ly; tÞ ¼ Glðx; tÞ;

ð3Þ

where H(t) denotes the time dependent heat source, f(x, y) denotes
the initial temperature distribution, F0(y, t), Fl(y, t), G0(x, t) and
Gl(x, t) are the left, right, bottom, and top boundary conditions of
the rectangular domain, respectively. To identify the unknown heat
source, we give overspecified temperature data:

uðxm; y; tÞ ¼ Fmðy; tÞ; uðx; ym; tÞ ¼ Gmðx; tÞ: ð4Þ

Yan et al. [16] proposed a variable transformation for the
one-dimensional inverse heat source problems:

Tðx; tÞ ¼ uðx; tÞ �
Z t

0
HðsÞds: ð5Þ

We applied the same transformation into the two-dimensional

problem by Tðx; y; tÞ ¼ uðx; y; tÞ �
R t

0 HðsÞds and Eqs. (1)–(4) are
transformed into a homogeneous PDE:

@Tðx; y; tÞ
@t

¼ @
2Tðx; y; tÞ
@x2 þ @

2Tðx; y; tÞ
@y2 ;

0 < x < lx; 0 < y < ly; 0 < t 6 tf ;

ð6Þ

Tðx; y;0Þ ¼ f ðx; yÞ; ð7Þ

Tðxm; y; tÞ � Tð0; y; tÞ ¼ Fmðy; tÞ � F0ðy; tÞ;
Tðlx; y; tÞ � Tðxm; y; tÞ ¼ Flðy; tÞ � Fmðy; tÞ;

ð8Þ

Nomenclature

u temperature
H heat source
t temporal coordinate
x, y spatial coordinate
t initial condition
F, G boundary condition
T transformed temperature
A stiffness matrix of weighting coefficients
c vector of weighting coefficients
b vector of known data
a, d element of weighting coefficients

m degree of polynomials
n number of points

Subscripts
i, j, k indices

Superscripts
g governing equation
0 initial condition
b boundary condition
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