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a b s t r a c t

In this paper we investigate Marangoni convection heat transfer of power-law fluids in porous medium
with heat generation. The convection is driven by a temperature gradient that the surface tension is a
quadratic function of the temperature. A new heat transfer constitutive equation is proposed based on
N-diffusion proposed by Philip and the abnormal convection–diffusion model proposed by Pascal in
which we assume that the heat diffusion depends non-linearly on both the temperature and the
temperature gradient with modified Fourier heat conduction for power-law fluid. The governing partial
differential equations are reduced to ordinary differential equations by suitable similarity transforma-
tions. Approximate analytical solution is obtained using homotopy analytical method (HAM) which is
compared with numerical ones for particular cases in good agreement. The transport characteristics of
velocity and temperature fields are analyzed in detail.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Marangoni convection, induced by surface tension gradient on
the interface, is a very important physical phenomenon under
microgravity conditions [1]. It has received much attention in
recent years [2]. In the mid 1860s, Marangoni found the phe-
nomenon that the natural convection dominated by liquid gravity
gradually disappeared in a microgravity environment, whereas, at
the interface of liquid, the surface tension plays a leading role and
causes a surface tension gradient [3]. In 1978, Napolitano observed
that there may be a dissipative layer in liquid–liquid or liquid–gas
system, which is called Marangoni boundary layer [4]. According to
the different origin, Marangoni effect is divided into the thermal
effect of Marangoni (EMT) and the solute Marangoni effect (EMS)
[5]. The EMT is mainly caused by the disequilibrium of the
surface heat. The EMS is mainly caused by the imbalance of surface
adsorption system.

Non-Newtonian fluids are found in many engineering applica-
tions where they exhibit some significantly different dynamic
behavior from Newtonian fluids. For half a century, a considerable
effort has been devoted to the studying of non-Newtonian fluids
with the aim of predicting their complex flow, heat and mass

transfer mechanisms. Various different constitutive equations
were proposed, among which the power-law model is much attrac-
tive and has been widely used in many fields of application.
Schowalter [6] and Acrivos et al. [7] firstly applied deduced the
laminar boundary layer equations of power-law fluid flow over
the semi-infinite flat plate. For an incompressible power-law fluid
past a flat surface, its power-law shear rate-shear stress relation is

expressed as s ¼ l � @U=@Y j@U=@Yjn�1
; where l is the consistency

and n is the power-law exponent of the fluid. The case n ¼ 1 corre-
sponds to a Newtonian fluid and the case 0 < n < 1 is ‘‘power law’’
relation proposed as being descriptive of pseudo-plastic
non-Newtonian fluids and n > 1 describes the dilatant fluid. Pop
et al. [8,9] studied mixed convection heat transfer of power-law
non-Newtonian fluids from a vertical surface, a modified Fourier
heat conduction law was proposed, which take the effects of
power-law viscosity on temperature fields into account. Zheng
et al. [10,11] proposed a new heat transfer model by assuming that
the temperature field is similar to the velocity field, the effects of
power-law viscosity on heat conductivity are analyzed. In addition,
Li et al. [12–14] numerically simulated the phenomenon of flow,
heat transfer and diffusion of the power-law fluid in the circular
tube. Lin et al. [15–18] studied the heat and mass transfer of steady
laminar Marangoni convection driven by surface tension gradient
using numerical method.
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In 1961, Philip proposed a model for some special diffusion
process as [19] @C=@t ¼ r � ðABÞ, where C is the generalized
concentration, t is time, A is a constant and B is a function of the
concentration gradient rC. When B ¼ rC, we can get the classical

diffusion equation (Fick’s Law). Let B ¼ jrCjN�1rC ðN > 0Þ; we
obtain the so-called N-diffusion equation. Wu [20] and Wang
[21] investigated a free boundary nonlinear problem for the
N-diffusion equation, existence, uniqueness and analyticity results
were established. Later, Pascal [22–24] presented a new convec-
tion–diffusion model by consider the nonlinear molecular diffusion
for mass transfer in a two-phase system. In the model, the
molecular diffusion is proposed to depending non-linearly on both
the concentration and the concentration gradient as the form

B ¼ CmjrCjN�1rC ðN P 1Þ:.
This paper focused on Marangoni convection caused by the

surface tension which is quadratic functions of the temperature.
We proposed a new model for a constitutive relation of

B ¼ ðT � T1ÞmjrTjn�1rT ð0 < n 6 1Þ: The effects of power-law
fluid viscosity on temperature field is taken into account by
assuming that the temperature field is similar to the velocity field
[25–26], the governing partial differential equations are trans-
formed into ordinary differential equations by using similarity
transformations. Analytical solutions are obtained using Homotopy
method (HAM) [27], the accuracy and effectiveness of analytical
results are verified by numerical solutions. The effects of
temperature power law index, the velocity power law index, the
dimensional porosity parameter, the Marangoni Number and
the dimensional heat generation parameter on the velocity and
the temperature fields are graphically illustrated and analyzed.

2. Mathematical formulation

Consider two-dimensional, steady, laminar boundary layer flow
of an incompressible power-law fluid in porous medium over a
plate surface in the presence of surface tension due to temperature
gradient (see Fig. 1 schematic of the physical system). It is assumed
that the interface is not deformed with heat generation effect.
Marangoni effect acts as a boundary condition on the governing
equations for the flow. Taking the above assumptions into
consideration, the governing equations are written as [5,28]

Continuity equation
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Energy equation
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where U and V are the velocity components in the X and Y direc-

tions, respectively. T is the temperature. m @U
@Y

�� ��n�1 is the kinematic

viscosity, a ¼ xðT � T1Þm @T
@Y

�� ��n�1 is the thermal diffusivity, / is the
porosity, k is the permeability of the porous medium, Q0 is the heat
generation coefficient, q is the density, cp is the specific heat at
constant pressure. T1 is the constant, denote the temperature of
species far from the surface. Here we only consider the
Pseudo-plastic fluid and Newtonian fluid. The dependence of
surface tension on temperature can be expressed as

d ¼ d0 þ
c
2
ðT � T1Þ2; ð6Þ

and

c ¼ @2d

@T2

�����
T¼T1

; ð7Þ

Nomenclature

A positive constant, [–]
c dimensional concentration, [–]
cp specific heat at constant pressure, [J kg�1 k�1]
f similar stream function, [–]
m temperature power-law index, [–]
n power-law index, [–]
P dimensional porosity parameter, [–]
P0 porosity parameter, [–]
Pr Prandtl number, [–]
Q dimensional heat generation parameter, [–]
Q0 heat generation coefficient, [–]
T temperature, [K]
T1 temperature of species far from the surface, [K]
t dimensional temperature, [–]
U;V velocity components along X and Y directions,

respectively, [m s�1]

u; v dimensional velocity along x and y directions,
respectively, [–]

X;Y cartesian coordinates, [m]
x; y dimensional cartesian coordinates, [–]

Greek symbols
d0 The minimum value of the surface tension, a positive

constant, [N m�1]
d Surface tension, [N m�1]
g Location similarity variable, [–]
h Temperature similarity variable, [–]
q Density, [kg m�3]
w Stream function, [X�1 m�1]

Fig. 1. Schematic of the physical system.
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