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a b s t r a c t

Angstrommethod is a steady-state measurement for thermal diffusivity a using ac heating. Since thermal
conductivity k is a better-known quantity, measured diffusivity a is sometimes transformed into k based
on relation k ¼ Cva using recorded or DSC measured Cv . However, Angstrom method itself is principally
possible to extend to specific heat measurements, yet the accuracy is not promising due to the complex-
ity of heat loss. Here we present a modified method for simultaneous measurements of thermal diffusiv-
ity and thermal conductivity with high accuracy by taking heat loss into account. A linear heat loss term
m2T is introduced into the diffusion equation and the thermal conductivity k can be directly measured
instead of specific heat. The measured thermal properties of commercial graphite sheets agree well with
their nominal value. The origins of m2 are also discussed. m2 can be divided into amplitude independent
and dependent part. From the basics of radiation and convection, the first-order radiation and convection
comprise the amplitude independent part, while the dependent part includes higher order (dominated by
second-order) radiation. Although the amplitude independent part agrees well with the extrapolated
value of m2 at zero amplitude, the second-order radiation cannot fully cover the measured amplitude
dependent part. This discrepancy is further explained by floating temperature baseline variation due to
residual heat during heat oscillation.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The use of steady-state temperature oscillations for thermal dif-
fusivity ameasurements was first stated by Angstrom in 1861 and
is generally known as Angstrommethod [1,2]. It has not been prop-
erly replaced by other techniques (e.g. Laser flash apparatus [3]) for
many years due to its mathematical clearance and convenience of
installation. Numerous variations of Angstrom method have been
developed to obtain material thermal properties in different shape
and condition (e.g. Wagoner [4], Kosky [5–7], Cerceo [8], Topolnicki
[9], Roetzel [10], Baughn [11] and Smalc [12]). Among these varia-
tions, simultaneous measurement of the diffusivity a and volumet-
ric specific heat Cv is an important branch. Since thermal
conductivity k is a better-known quantity, measured diffusivity a
values are sometimes transform into k based on relation k ¼ Cva.
Before simultaneous measurements were well developed, this
can only be done whether using recorded volumetric specific heat
Cv [4,12,13], or using complementary instruments such as
Differential Scanning Calorimeter (DSC) [12].

In principle, it is possible for Angstrom method to derive Cv by
alternating heater power or oscillation frequency. In practice, how-
ever, it was considered of low accuracy due to the complexity of
the heat loss analysis [14]. Basically, Angstrom method is indepen-
dent to heat loss for diffusivity a measuring, while it is indeed
heat-loss dependent for specific heat Cv measuring. Sullivan et al.
[15] accepted the inaccuracy in the absolute Cv value, while argued
that the changes in Cv can be more precisely measured by
measuring frequency-dependent temperature amplitude. Yet no
heat-loss induced error was discussed in their work. There are
other attempts on adding heat loss term into the thermal diffusion
equation. Since the effect of heat loss varies for different sample
dimensions and measuring models, understanding the origins of
the heat loss in different instrumentals and modeling them
properly are crucial to the validity and accuracy of data reduction
and analysis.

For slab or plate samples clapped by heater or detector at both
sides, chopped laser or thermoelectric module is the most used
heating sources. Choices depend on whether in-plane or
cross-plane properties are wanted. For in-plane diffusivity or
conductivity, the 2D infinite plane model is used by heating the
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sample center with a small laser spot [13]. For cross-plane diffusiv-
ity or conductivity, the 1D thermal wave model is used by heating
the entire area of one surface of the sample using TE (Thermoelec-
tric) module [16]. For 2D infinite plane model, Visser et al. [13]
introduced dimensionless variable d into the solution to account
for convective and radiative heat loss from the surface to sample.
The authors estimated that d < 0:1, which they claimed might be
neglected for their case.

For strip or bundle samples, the heating power is usually
mounted on one end of the sample and the 1D semi-infinite model
is commonly used due to the much longer sample length compared
to thermal wavelength [4,17,18]. Its heat loss mostly lies in the
sample surfaces that are much larger than the sample-heater or
sample-holder interfaces. This is quite different a scenario from
the slab or plate sample, whose heat loss mostly lies in the inter-
faces. For the measurement of carbon fibber bundles, Wagoner
and his co-workers [4] introduce the heat loss term BDT into 1D
thermal diffusion equation diffusivity, where B is heat loss param-
eter, D is diffusivity and T is temperature. They assumed the heat
loss was a T-linear term and the parameter was proportional to dif-
fusivity. Their assumption was not verified in their work since they
focused on diffusivity and did not mention heat loss any further. To
the best of our knowledge, no work has simultaneously extracted
diffusivity and specific heat from a suitable series of measurements
for strip samples and needless to say the heat loss effect on the
measurements.

This work will focus on the strip samples and investigate the
heat-loss effects on thermal diffusivity and specific heat/thermal
conductivity measurements. Graphite sheets are used as typical
strip samples since it is an anisotropic material with a in-plane dif-
fusivity much larger than cross-plane. Angstrom method is a wide-
accepted way to measure its in-plane diffusivity. Once the specific
heat or conductivity can also be extracted from the same set-up, its
practical utility aggrandizes. In Section 2, the heat-loss included
Angstrom model is developed by introducing a heat loss term to
the thermal diffusion equation. Derivation of this modified equa-
tion make it possible to simultaneously extract thermal diffusivity
and thermal conductivity from a series of experiments. Based on
this mathematic modification, experiments and new data analysis
approach are provided in Section 3. The amplitude and measuring

distance dependence of the measured diffusivity and conductivity
are revealed in Section 4. The origins of heat loss are analyzed in
very detail in Section 5. Uncertainty and error estimation are
attached in Supplementary Information.

2. Theory

2.1. General

With heat loss, the one dimensional heat diffusion equation can
be rewritten as

1
a
@T
@t

þm2T ¼ @2T

@2x
ð1Þ

where a is thermal diffusivity [m2/s], T is temperature [K], and m is
the coefficient of surface heat loss. Although heat loss includes con-
duction (�T), convection (�T) and radiation (�T4), we only use the
homogeneous T-linear termm2T as an approximation for math con-
venience. The validity of this approximation will be demonstrated
later.

When a sinusoidal heat wave is sent down to the sample in
shape of stripe from one end (x = 0) (as shown in Fig. 1), the solu-
tion of Eq. (1) is also in waveform of

Tðx; tÞ ¼ Aþ BðxÞeixt ð2Þ
where i is the unit imaginary, x is angular frequency of the heat
wave, and A is a constant indicative of the baseline for the temper-
ature oscillation. One can also set A ¼ 0 for mathematical concise so
that the T should be taken as temperature deviation from the base-
line rather than the absolute temperature. The temperature
variation induced by the waveform heating has a complex
amplitude BðxÞ.

Substituting Tðx; tÞ ¼ BðxÞeixt into Eq. (1), the second order
ordinary differential equation for BðxÞ gives

BxxðxÞ � ix
a

þm2
� �

BðxÞ ¼ 0 ð3Þ

where BxxðxÞ is the second derivative of BðxÞ with respect to x. The
general solution of Eq. (3) is

Fig. 1. Schematic set-up of the Angstrom method (a) and the snapshots of the heat power wave (b) and measured temperature wave (c).
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