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a b s t r a c t

In this paper, we examine the laminar film condensation of pseudo-plastic non-Newtonian fluids with
variable thermal conductivity on an isothermal vertical plate. The thermal conductivity is assumed to
be power-law-dependent on the velocity gradient. The dual similar solutions, which are influenced by
the parameters of the power law number n and the thickness gd of the condensation film, are obtained
numerically by Runge–Kutta method coupled with shooting method. More attention is paid to discuss
the first branch of the solutions with physical meaning. Especially the effects of above both parameters
on the velocity and temperature distribution, condensation mass flow rate and the local Nusselt number
are analyzed in detail.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The study of laminar film condensation has received great
attention due to its wide applications in engineering and industry,
which include the design of heat exchanger, heat and fluid flows
for some industrial drying and cooling processes, enhanced recov-
ery of petroleum resources, packed-bed heat exchangers, solidifi-
cation of castings, geothermal reservoirs, and so on. The
pioneering work about laminar film condensation was done by
Nusselt [1], who considered the condensation onto an isothermal
plate maintained at a constant temperature below the saturation
temperature of the surrounding quiescent vapor. Later on, more
works have been done to refine Nusselt’s theory. For example,
Bromley [2] and Rohsenow [3] proposed modifications to the
latent heat of condensation to be used in assessing heat transfer
at the plate, respectively. However, both of them neglected the
inertial effects. Using boundary layer theory and similarity meth-
ods, Sparrow and Gregg [4] investigated numerically the gravity
driven laminar film condensation on a vertical plate, whose work
showed that the inertial effects on heat transfer are limited if the
Prandtl number is larger than 10. To be more important, they

firstly recognized the close parallels between natural convection
boundary layers and laminar film condensation. The importance
of such results has been well known and documented in Ref. [5].
Chen [6] considered the retarding effect of vapor shear stress on
the condensation film by perturbation methods. A comparison of
Chen’s results with Sparrow and Gregg’s ones shows that the influ-
ence of surface shear stress is negligible at high Prandtl number.
Koh et al. [7] noticed that the effect of the shear stress is significant
only when the condensation rate is sufficiently high. Rose [8] con-
firmed Koh’s conclusion and gave a more accurate expression for
the Nusselt number. Mendez et al. [9] studied the conjugate
condensation-heat conduction process of a saturated vapor in con-
tact with a vertical fin, including both longitudinal and transversal
heat conduction effects.

Recently, a considerable attention has been devoted to the
problem of predicting the behavior of non-Newtonian film conden-
sation. Among these classical works, the power-law flow is a signif-
icant type for its importance and simplicity. In 1960 Schowalter
[10] and Acrivos et al. [11] successfully applied the boundary layer
assumptions to the power-law model. Astarita et al. [12] also con-
ducted the fully developed laminar film flow of non-Newtonian
power-law fluids along a plane surface, who measured the film
thickness for various inclinations and flow rates. Later, Therien
et al. [13] conducted the similar work and compared the experi-
mental data with an analytical expression for the thickness of fully
developed films of power-law fluids. Sylvester et al. [14] also
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measured the film thickness as a function of the volumetric flow
rate, but they primarily focused on the onset of rippling on the film
surface and the characteristics of wavy film. In addition, some the-
oretical analysis of the power-law fluid film have been done by
means of integral method or similarity analysis [15–22].

In most of the classical works, the authors only take into
account the power-law kinematic viscosity in momentum equa-
tions of non-Newtonian fluids and still treat the thermal conduc-
tivity as a constant. However, in practical situations, physical
properties require to be variable. To describe the heat transfer
properly, the thermal conductivity for power-law fluids was
assumed to be power-law-dependence in mathematical modeling
view. Pop et al. [23,24] proposed a model that the thermal conduc-
tivity of non-Newtonian fluids was power-law-dependent on the
velocity gradient. Zheng et al. [25–27] also made an analogy
between the velocity field and the temperature field.

Durlofsky and Brady [28] ever indicated that similarity solu-
tions are important in helping us understand the behavior of fluids
and that these solutions may not represent a physically realizable
flow or stability in physics while they discussed existence of the
multiple solutions in the Berman’s problem. Maybe due to this rea-
son, most of the investigations to the fluids problems with the mul-
tiple solutions, such as the fluid flow between two rotating coaxial
disks [29], the boundary layer flow of fluid over a moving plate
[30,31], the mixed convection flow on a vertical porous plate
[32,33], the flow of fluid in a porous channel or pipe [34–38]
et al., were made from the mathematical point of view. In more
recently, Xu et al. [39] obtained the analytically solution of the
laminar film condensation of saturated steam on an isothermal
vertical plate using the homotopy analysis method. Furthermore,
they found the dual solutions are obtained for a range of values
of the parameter gd. Then the present study can be, therefore,
regarded as the extension of the paper Xu et al. [39], by considering
the laminar pseudo-plastic non-Newtonian fluids film condensa-
tion with variable thermal conductivity over an isothermal vertical
plate. The associated transfer characteristics are discussed in some
domains of parameters, including the power-law number n, the
generalized Prandtl number NPr and the thickness gd of the film.

2. Governing equations

Consider the stead film condensation of power-law fluid on an
isothermal vertical flat plate. Here we assume that the vapor reser-
voir is stationary and is everywhere at the saturation temperature
Tsat , and that momentum changes within the film are negligible.
The viscous shear force of the vapor on the interface of the film also
is neglected. ðx; yÞ are the cartesian coordinates downward and
normal to the flat surface. u and v are the velocity components in
x and y directions, respectively. The film is assumed to be thin
and that the change of pressure across the film is negligible. Fur-
thermore, the velocity gradient in the y-direction is much greater
than that in x-direction. Under these assumptions, the full govern-
ing equations in the liquid phase can be reduced to the following
boundary-layer equations:
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where n is the power-law number, g is the gravity acceleration,
and qv ;ql are the vapor and liquid density, respectively. Here
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is the kinematic viscosity, where K is the flow

consistency index for non-Newtonian viscosity, and a1 is the ther-
mal diffusivity. In terms of the relationship of Prandtl number to
the thermal diffusivity and kinematic viscosity, it may be seen that

the thermal diffusivity should be defined as a1 ¼ x @u
@y
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for @u

@y – 0

and a1 ¼ x ¼ k
qlcpl

for @u
@y ¼ 0. The case n ¼ 1 corresponds to the New-

tonian fluid. For 0 < n < 1, the effective viscosity decreases with the
shear rate and the behavior is shear thinning (or pseudoplastic).
Conversely, n > 1 is the viscosity increases with the shear rate
and the behavior is shear thickening (or Dilatant) [25,26].

The appropriate boundary conditions are [40]

y ¼ 0 : u ¼ 0; v ¼ 0; T ¼ Tw; ð4Þ

y ¼ d :
@u
@y

¼ 0; T ¼ Tsat; ð5Þ

where Tw is the plate temperature. d is the boundary layer thickness
of liquid film at the position x.

In terms of the standard definition of the stream function w
such that u ¼ @w=@y and v ¼ �@w=@x, the following similarity vari-
ables can be introduced:

w ¼ Axaf ðgÞ; hðx;gÞ ¼ T � Tsat

Tw � Tsat
; g ¼ Byxb: ð6Þ

where A;B;a; b are constants to be determined and f ðgÞ also denotes
the dimensionless function. Then u and v velocity component are
defined as:

u ¼ @w
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¼ �Axa�1ðaf ðgÞ þ bgf 0ðgÞÞ ð7Þ

In general, f 0ðgÞ is equivalent of the velocity u.
Substitute Eqs. (6) and (7) into Eqs. (1)–(3) and balance the

dimension of two sides of each equation, then A;B;a and b can
be determinated as follows:
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The governing Eqs. (1)–(3) can be transformed into the following
equations
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with the corresponding boundary conditions

f ð0Þ ¼ 0; f 0ð0Þ ¼ 0; hð0Þ ¼ 1; ð12Þ

f 00ðgdÞ ¼ 0; hðgdÞ ¼ 0; ð13Þ
where NPr ¼ c

x is the generalized Prandtl number, gd is the value of g
at the outer edge of the film. It should be noted that gd ¼ Bdx�

n
2nþ2

varies in the range 0 < gd < 2 in the most text books and papers
(such as [4]). Here we also follow the same assumption.

2.1. The velocity distribution, mass and heat transfer in the film

Similar to Oosthuizen’s work [40], we consider a control volume
with unit width. According to the conservation of momentum, the
forces on the control volume can be balanced.
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