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a b s t r a c t

Understanding solute transport process is of fundamental significance for industrial and natural
processes such as mixing and separation. Since detailed information for the transverse concentration
distribution is required for associated applications, compared with the sole consideration of the
cross-sectional mean concentration in previous studies, the present paper analytically explores the
complete spatial concentration distribution in packed tube flow by the proposed two-scale perturbation
analysis (Z. Wu, G.Q. Chen, Journal of Fluid Mechanics, 740 (2014) 196–213.). With modification on the
zeroth-order concentration up to the first-order, the deduced analytical solution gives a good prediction
for the longitudinal distribution of mean concentration as well as the transverse distribution, according
to comparisons with new results of numerical simulation. Importantly we show in the paper that instead
of being uniformly distributed in the cross-section as expected in traditional view, the transverse
concentration is highly non-uniform when Taylor dispersion model is applicable. Representing the
complicated flow conditions for packed tube flow, the unique dimensionless parameter as a damping
factor affects the complete spatial concentration distribution in two ways: cause the contraction of the
solute concentration cloud, and the flattening of the concentration contours.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding solute transport process is of great importance
for various applications in different fields. For industrial or
environmental processes such as mixing and separation [1–3],
pollution control [4,5], ecological restoration and wastewater
treatment engineering associated with wetlands [6–10], knowl-
edge for the concentration distribution and evolution is primarily
concerned [11–14]. And among the associated configurations,
solute transport in packed media flow, or packed tube flow as
studied in this paper, is a most typical one.

Taylor dispersion [15] describes an asymptotic stage of the con-
centration transport with the cross-sectional mean concentration
governed by a ‘‘diffusion process’’ in the flow direction. The con-
cept is so interesting and important that it has been intensively
studied and extensively applied in different fields in the past few
decades [2,16–21]. It is well know that if the flow velocity is
uniform across the cross-section of the tube, the solute transport

process follows a diffusion equation at a longitudinally moving
coordinate with a speed of the fluid flow. However, Taylor [15]
pointed out that even though there is a transverse distribution
for the flow velocity (non-uniform), after a given initial stage the
solute transport can also be described by a diffusion equation,
although with a much greater ‘‘diffusivity’’ than the molecular dif-
fusivity; and the centroid of the solute cloud longitudinally moves
at a constant speed, too, which turns out to be the cross-sectional
mean velocity of the flow. For the mechanism, the non-uniformity
of transverse distribution of the flow velocity and the transverse
molecular diffusion together contribute to this ‘‘enhanced
diffusion’’, usually leading to a several orders of magnitude greater
‘‘diffusivity’’ in practical applications [22,23].

Solute transport in packed tube flow is much more complicated
than that in pure fluid flow [24,25]. And a great deal of research
works have been carried out at different angles in recent years.
For example, there are studies focusing on the detailed
pore-scale flow and transport processes, mainly based on the mas-
sive computational efforts [26,27]. To analytically tackle the prob-
lem, Professor Chen and his group explored Taylor dispersion
process at the holistic scale, on the basis of phase average
[24,25,28–30]. The operation of phase average is to smear out
the discontinuity caused by the irregular solid packed media in
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the considered region, resulting in a continuous distribution for
both the velocity and concentration at the phase-average scale.
Thus the analysis for pure fluid flow can be extended to study
solute transport in packed media flow. In this paper, we perform
the study under this established framework.

The concept of Taylor dispersion is traditionally applied for the
cross-sectional mean concentration [5,10,23,29,31]. In previous
efforts for solute transport in packed tube flow, different analytical
approaches were applied for the mean concentration distribution,
either for a single-zone tube with homogeneous media packed in
[24] or for a two-zone configuration with heterogeneity of media
distribution [25]. However, in some environmental or industrial
processes we need not only the longitudinal mean concentration,
but also the transverse concentration distribution details. In a recent
progress, Wu and Chen [23,32] have shown that the transverse con-
centration distribution difference can be remarkable for a very long
period after Taylor dispersion model is valid for solute transport in
pure fluid flow, indicating the great significance of exploring the
detailed transverse concentration distribution patterns.

To study the complete spatial concentration distribution for Tay-
lor dispersion process, the traditional one-dimensional Taylor dis-
persion model is insufficient. As an extension based on the
homogenization technique, the two-scale perturbation analysis pro-
posed by Wu and Chen [23,32] provides an appropriate analytical
approach for the present exploration. It is shown that by introducing
the longitudinal correction functions and considering the
higher-order perturbation problems other than that up to the
second-order, the deduced analytical solution captures the longitu-
dinal skewness of the concentration distribution, which is important
in constructing the complete spatial concentration distribution.

In this paper, we adopt the two-scale perturbation analysis to
study the complete spatial concentration distribution for solute
transport in packed tube flow at the phase-average scale. The arti-
cle is structured as follows. In Section 2, we give the formulation
illustrating the configuration, the governing equations, and the
perturbation problems. In Section 3, the analytical solution with
modification on the zeroth-order concentration up to the
first-order is deduced. Section 4 provides a simple numerical vali-
dation for the obtained analytical solution, and further discussions.
Conclusions are given at the end of the paper.

2. Formulation

Solute transport process in packed tube flow is of great com-
plexity for the existence of the irregular packed media in the con-
cerned region, which causes the discontinuity of flow and
concentration in space, and the complicated additional boundary
conditions at the surface of the packed media changing the local
flow and concentration distributions. Instead of studying the pro-
cess at the pore-scale characterized by the typical transverse scale
of the flow path, we explore the problem at an intermediate
phase-average scale, applying the phase average operation to
smear out the discontinuity [25,33,34]. Since the resulted flow
and concentration distribution is continuous, the analysis we
applied for the pure fluid flow can thus be directly extended for
the present study.

The previous analytical explorations for solute transport have
mainly focused on the longitudinal distribution of mean concentra-
tion, and only some limited research work discussed the transverse
distribution, such as the one by Bolster et al. [35]. In the reference,
the authors applied a volume averaging approach to calculate the
concentration distribution, although their primary concern is to
quantify mixing by the acquired information. Actually, the volume
averaging and the homogenization (which is the basis of the pre-
sent research) techniques have much in common, for example,

they both need to determine the ‘‘closure problems’’ at the
‘‘micro-scale’’ fields, the information of which is required for the
macro-scale descriptions of the process (such as the effective coef-
ficient in Taylor dispersion model). However, to reveal the trans-
verse concentration distribution details, the ‘‘micro-scale’’ fields
are much more emphasized.

The governing equation for concentration transport in packed
media flow at the phase-average scale is adopted as [25,33,34]
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where / is porosity, C concentration, t time, U superficial velocity, j
tortuosity, k concentration diffusivity, and K concentration disper-
sivity tensor.

The radius of the packed tube is R. In a Cylindrical coordinate
system, x-axis aligns with the longitudinal direction, r-axis the
radial direction, and O at the central line of the tube is the origin.
For the idealized case of homogeneous packed tube with constant
physical parameters /, j, k, and K, Eq. (1) is simplified into
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where the superficial velocity u is only a function of the radial coor-
dinate r.

For a pulsed injection of the solute across the plane x ¼ 0, the
initial and boundary conditions are respectively given as

Cðx; r; tÞjt¼0 ¼
QdðxÞ
/pR2 ; ð3Þ
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and

Cðx; r; tÞjx¼�1 ¼ 0; ð5Þ

where Q is the released mass and dð�Þ the Dirac delta function.
For the perturbation problems by the two-scale perturbation

analysis [23,32], we first define the transverse-average operation
for any given quantity v as

hvi �
Z 1

0
2fv df: ð6Þ

Introducing the following dimensionless parameters:
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with L is a longitudinal characteristic length, the governing equa-
tion Eq. (2) can be rewritten as
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Here

w0 � w� hwi ð9Þ

defines the velocity deviation, and the prime can represent the devi-
ation of any quantity from its mean. In Eq. (8), w0 is introduced by
the adoption of the longitudinally moving coordinate system with
the transverse mean velocity of the flow: mathematically, the mov-
ing system is expressed by the definition of the longitudinal
variable

n ¼ x
L
� s; ð10Þ
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