Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier.com/locate/ijhmt

Application of a statistical design for analyzing basic performance characteristics of the cross-flow Maisotsenko cycle heat exchanger

HEAT and M

Demis Pandelidis*, Sergey Anisimov

Department of Environmental Engineering, Wroclaw University of Technology, 27 Wyspiański St., 50-370 Wroclaw, Poland

ARTICLE INFO

Article history: Received 24 October 2015 Received in revised form 7 November 2015 Accepted 13 November 2015

Keywords: Indirect evaporative cooling Mathematical model Heat and mass exchanger

ABSTRACT

This paper presents the simplified model generated by response surface methodology (RSM) for analyzing basic performance characteristics of the Maisotsenko cycle heat and mass exchanger. A fivelevel central composite design (CCD) was employed and filled with the experimental data and data obtained from the validated numerical model. Four performance factors were selected as the representative responses: outlet product airflow temperature, specific cooling capacity, dew point effectiveness and the theoretical COP. The statistical significance, accuracy and overall predictive capability of the model developed was examined using *F*-test, regression analysis of the coefficient of determination R^2 and absolute average deviation (AAD) by comparing predicted responses with the experimental data. The statistical approach identified the effect of five independent parameters on the selected performance characteristics and the effectiveness of heat and mass transfer processes in the channels of the crossflow M-cycle exchanger was found to be significantly influenced by supply airflow mass flow rate, inlet air temperature and relative humidity. The models developed allow for the fast and precise calculation of the most important performance factors of the Maisotsenko cycle heat and mass exchangers in a variety of climate conditions. The results of this study have clearly demonstrated high efficiency of the examined heat exchanger and possible ways of its improving.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The rising living standards lead to the high air-conditioning demand, especially in summer time in high temperature areas. This high demand results in an increased electricity consumption, due to the fact that the most popular cooling devices are based on mechanical compression systems [1–3]. It becomes necessary to develop new sources of cooling power, which could be less dependent on the electric energy. The use of indirect evaporative cooling as a new source of cooling energy looks very promising, both in the field of electricity consumption and in the direction of abandoning dangerous refrigerants, since its working medium is water. Currently new methods of evaporative air cooling, called sub-wet bulb evaporative cooling, have been developed and they are able to achieve very low outlet air temperatures (theoretically, the limit for these cycles is the ambient air dew point temperature [4]). Sub-wet bulb evaporative cooling is then a new innovative way to produce cooled air for air conditioning systems without adding humidity to the supply airflow and using dangerous refrigerants. One of the most promising methods of achieving a low temperature level of the

* Corresponding author. E-mail address: demis.pandelidis@pwr.wroc.pl (D. Pandelidis). air-conditioning air is the novel cycle, known as the M-cycle (Maisotsenko cycle) [1–7]. This unique technique was investigated by many authors. Balyani et al. [5] presented the analysis of the best cooling strategy based on thermal comfort and 3E (energy, economic and environmental) analyses for small scale residential buildings at diverse climatic conditions. It was established that in temperate and humid, very hot and semi-humid, and temperate and wet cities, desiccant-enhanced evaporative cooling was the best solution. Gao et al. [6] experimentally analyzed an integrated liquid-desiccant indirect evaporative air-cooling system with the M-cycle. The results showed that the dehumidification process in the first stage of the cycle has direct impact on the cooling capacity in the second stage. Caliskan et al. [7] presented energy and exergy analysis of one of the most effective indirect evaporative air cooling cycles: the Maisotsenko cycle. The results indicated that maximum exergy efficiency is found to be 19.1% for a reference temperature of 23.9 °C where the optimum operation conditions take place. Cui et al. [8] analyzed numerically the novel M-cycle heat and mass exchanger (HMX) based on a counter-flow closed-loop configuration consisting of separated working channels and product channels. Simulation results have indicated that the novel dew point evaporative air conditioner is able to achieve a higher wet-bulb and dew point effectiveness with lower airflow velocity, smaller

...

<i>C</i> _p	specific heat capacity of moist air [J/(kg K)]	Non dim	ensional coordinates
СОР	theoretical energy efficiency factor of the system,	\overline{l}_Y^{work}	relative channel width of the dry working part of the
	$COP = Q_1/N [-]$		heat exchanger, $l_{Y}^{WOTK} = L_{Y}^{WOTK}/L_{Y}$ [-]
f	fluid fraction coefficient [–]	NTU	number of transfer units, NTU = $\alpha F/(Gc_p)$ [–]
h	height of the heat exchanger channel [m]	Re	Reynolds number [–]
G	moist air mass flow rate [kg/s]	k	the number of factors $(k = 5)$ [–]
L_X	supply air streamwise length of the cooler [m]	n*	the number of experimental runs in the factorial portion
L_Y	working air streamwise length in the wet channel of the		of the design $(n^* = 2^k = 32)$ [-]
	cooler [m]	n _r	the number of repetitions of experiments at the centre
L_Y^{WOTK}	channel width of the dry working part of the heat ex-		point of the design $(n_r = 8)$ [-]
	changer, representing the size of the initial part of the exchanger [m]	n_{lpha}	the number of axial points in the design $(n_{\alpha} = 2k = 10)$
Ν	theoretical fan power [W]	п	the number of experimental runs $(n = n^* + n_r + n_{\alpha} = 50)$
Q_1	cooling capacity rate [W]		[-]
Ô.	specific cooling capacity per cubic meter of the heat ex-	X_i, X_i	coded independent variables [-]
-	changer's structure, $\hat{Q} = \hat{Q}_1 / V_{HMX} [kW/m^3]$		
RH	relative humidity [%]	Subscripts	
t	temperature [°C]	1	product (supply) air flow
ī	average temperature [°C]	2	working air flow in the wet channels (product part of
$V_{\rm HMX}$	volume of the HMX structure $V_{\text{HMX}} = 2(h + \delta_{plt}) L_X L_Y$		exchanger)
	[m ³]	DP	dew point
W	heat capacity rate of the fluid [W/K]	i	inlet
Χ	coordinate along the supply airflow direction [m]	0	outlet
Y	coordinate perpendicular to X coordinate [m]	product	referenced to the product part of the heat exchange
Δp	pressure drop [Pa]	work	referenced to the working part of the heat exchange
-		X	air streamwise in the dry channels
Special characters		Y	air streamwise in the wet channels
α convective heat transfer coefficient [W/(m ² K)]		-	······································
8np	dew point effectiveness, $\varepsilon_{DP} = (t_{1i} - \bar{t}_{1o})/(t_{1i} - t_{1o}^{DP})$ [–]		
Dr	$r = \frac{1}{10} - \frac{1}{$		

channel height, larger length-to-height ratio, and lower product-toworking airflow ratio. It is clearly visible that researchers showed a high potential of the Maisotsenko cycle to become the environmentally friendly and cheap source of energy for cooling. Currently, the most popular exchanger which utilizes the Maisotsenko cycle is the cross-flow heat and mass exchanger [1,2,4,9]. This device with unique design (Fig. 1) is claimed to be the most effective

Fig. 1. Cross-flow Maisotsenko cycle HMX.

compromise between cooling effectiveness, low production costs and easy application potential [9].

Many authors investigated the cross-flow Maisotsenko cycle HMX numerically [1–4,10–18]. Reviews presented in our previous studies [2,4,10,12,18] showed that numerical models describing heat and mass transfer process in the Maisotsenko cycle cross-flow heat exchanger are rather complex and cumbersome for everyday use. Moreover, numerical models based on partial differential and algebraic equations require substantial computational time. Therefore, it is essential to develop a practical, accurate and fast mathematical method to calculate the performance of the M-cycle HMXes which may by applicable for engineers. Such method may also be used for optimization of the M-cycle exchangers, because it can significantly reduce a time of calculations. The

Fig. 2. Independent variables chosen for the modeling purpose.

Download English Version:

https://daneshyari.com/en/article/656616

Download Persian Version:

https://daneshyari.com/article/656616

Daneshyari.com