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a b s t r a c t

We present the first model ever, that describes explicitly ice crystal growth in a sugar solution during
freezing. This 2-D model uses the phase field method, supplemented with realistic, and predictive theo-
ries on the thermodynamics and (diffusion) kinetics of this food system. We have to make use of a novel
type of phase field to obtain realistic, micron-sized ice crystals, and exclusion of sugar from the crystalline
phase. Via simulation of a single ice crystal, we identify important time scales governing the growth.
These times scales are also important for the coarsening of the ice morphology in freezing systems with
multiple ice crystals. These simulations show that the average ice crystal size is governed by the freezing
rate via a power law, similar to an empirical relation from literatures, which is deduced from experiment.
The presented model is viewed as a good basis for even more realistic simulations of crystal growth in
food.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The size and shape of ice crystals are important measures for
the quality of frozen foods, like ice cream or frozen soft fruits [1].
Small rounded ice crystals are desired for ice cream with a soft
and creamy texture. Other foods are frozen as a means of preserva-
tion. For frozen foods having a cellular tissue, it is important that
the ice crystals remain smaller than the cell size, otherwise they
will puncture them – rendering an unappetizing, mushy food after
thawing. Freezing is also used for texturing foods like the tradi-
tional Japanese food, kori-tofu [2]. Here, often larger crystals are
desired to render a fibrous structure to the soy gel. This freeze tex-
turing is nowadays also used for non-food applications like scaf-
folds of biomaterials and other advanced materials [3,4].

In our previous research we have used freeze–drying to struc-
ture vegetables for enhanced hydration [5]. In that research we
have derived an empirical relation for the mean ice crystal size
as a function of freezing rate [6]. Our literature review has shown
that there are several (semi-) empirical relations, which quite dif-
fer from each other. We expect that also the composition of the
food is of importance, but none of the empirical relations takes that
into account. Hence, there is a need for more theoretical under-
standing how the ice crystal size can be controlled via freezing rate
and food formulation. Such understanding is also advantageous for
frozen foods like ice cream, which are reformulated to contain less
sugars to improve the health effects of this indulgent food.

The theoretical understanding of ice crystal growth at the
microscale we like to obtain from phase field simulations [7]. Cur-
rently, this numerical method is mainly used to describe the evo-
lution of the microstructure of alloys during solidification. The
so-called phase field indicates whether the material is either solid
or liquid. In the interfacial region, the phase field is a smooth func-
tion that varies in between its extremal values, which are used to
indicate the bulk solid and liquid phases. The interfacial region
has a finite width, which is several times larger than the grid spac-
ing. Therefore, this numerical method is also called the diffuse
interface method.

The evolution of the phase field and the solute concentration
field are governed by a free energy functional. Often, the evolution
of the concentration field is driven by diffusion only, with the
chemical potential as the driving force. However, in the liquid
phase both fields can be subject to flow, driven by gradients in
hydrostatic and osmotic pressures. The driving forces for diffusion
and flow, the chemical potential and osmotic pressure are derived
from the above mentioned free energy functional. In this aspect the
phase field method is very related to the Cahn–Hilliard method of
spinodal decomposition of alloys and polymer blends [8,9]. We
have used similar models earlier to describe (surfactant-
stabilized) emulsions [10–13].

Via its coupling to the free energy functional, it is relatively
straightforward to link the phase field method to realistic, thermo-
dynamic descriptions of complex food materials [14]. Often, foods
are structured via phase transitions [15], which are handled rela-
tively straightforwardly in the phase field method. Not only solid-
ifcation, but also boiling phenomena can be treated [16].
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Having developed realistic descriptions of the thermodynamics
of complex foods including sugars [17,18], and a realistic descrip-
tion of diffusion in these materials [19], we are in the position to
apply the phase field method to realistic simulations of microstruc-
tural developments of sugar solutions during freezing. Only
recently, the phase field method has been applied to freezing of
mixtures of water and a solute, namely salt [20,21]. However, for
these mixtures simplified approximations are used for the thermo-
dynamics and the diffusion. Here, we intend to use realistic, and
predictive theories, which do not require any approximations.

In this paper we will report our first results of the application of
the phase field method to freezing of sucrose solutions, which is
taken as a model system for ice cream. The only non-realistic
restrictions of the model we will impose are: (1) the simulations
will be performed in 2-D, and (2) we do not assume anisotropy
in the interfacial tension, which is normally assumed in the phase
field method to model dendritic growth. However, as said above,
dendritic growth is not stimulated in ice-creams, and microstruc-
tures of frozen foods indicate that cellular crystal growth domi-
nates in normal food freezing operations [1,6]. Furthermore, we
envision that the 2-D representation of the crystals are cross sec-
tions of the cellular crystals. Cellular ice crystals grow in the direc-
tion of the temperature gradient, and their cross section is about
circular. In the 2-D plane the temperature gradient will be
assumed zero. The cross sectional size of the cellular ice crystals
is often the length scale of interest for the morphology of frozen
foods [5]. Hence, we do expect the simulated ice morphology to
be comparable to that of slowly frozen sugar solutions.

Below, we will investigate the growth of single seed crystals,
and multiple seed crystals. Crystallization takes place in 4 steps:
(1) nucleation, (2) recalescence, (3) growth and (4) coarsening.
However, there is a large difference in time and length scales gov-
erning each step. Hence, we will focus on the last 2 steps only. Seed
crystals are placed in the computational domain at the start of the
simulation. We will particularly focus on the interaction between
growth, coarsening and freezing rate. For single seed crystals we
first focus on the numerical aspects of the developed model, and
investigate the important time scales of the crystallization process.
In the latter case, we examine the impingement of crystals, and the
interaction of coarsening and freezing rate.

2. Phase field model

2.1. Governing equations

To describe non-isothermal solidification of aqueous solutions,
we need to describe in principle three fields: the energy density
e, the solute volume fraction w, and the phase field / – which is
equivalent to the volume fraction of ice. In the phase field method,
the total energy density e is decomposed in sensible energy density
q and a contribution due to latent heat:

e ¼ q� Lice/ ð1Þ
with Lice the specific enthalpy of fusion for ice, measured in J=m3.
The sensible energy density is linear with temperature:

q ¼ ½/Cp;ice þ ð1� /ÞCp;w�ðT � TmÞ ð2Þ
Cp;i is the specific heat of the material i, in units of (J=m3=K). To

simplify the initial presentation of the model, we have assumed
implicitly that specific heat of the liquid phase is dependent of
the solute concentration. Tm is the melting temperature of ice –
which is taken as the reference temperature for the energy.

The energy balance is written with the change in latent heat in
the right-hand-side of the equation:

@tq ¼ rkð/;wÞ � rT þ Lice@t/ ð3Þ

The equation will be solved for q, and @t/ will follow from the evo-
lution of the phase field, as described below. The thermal conduc-
tivity of ice and sugar solution is different, and it is thus a
function of / and w.

The ice volume fraction evolves according to Allen–Cahn [7]:

1
s/

@t/ ¼ � df
d/

ð4Þ

df=d/ is the variational derivative of the free energy functional
against the phase field order parameter. The free energy functional
f will be given below.

The solute volume fraction evolves as:

@tw ¼ rMw � r df
dw

ð5Þ

The mobility Mw is related to the moisture diffusivity, Dm, via
Mw ¼ Dmwð1� wÞ. df=dw is the chemical potential difference, ~lw,
the driving force for diffusion. It is also derived from the free energy
functional, via the derivative of the free energy against the solute
volume fraction w.

The total free energy density is decomposed into two parts:
f ¼ f w þ f /, which are a function of w and / respectively. f w is the
free energy density of the sugar solution, which is described by
the Flory–Huggins (FH) theory [17,18]. In case of / ¼ 0, it reads:

f w
RT

¼ 1
N
w lnðwÞ þ ð1� wÞ lnð1� wÞ þ vwð1� wÞ ð6Þ

v is the Flory–Huggins interaction parameter, and N is the ratio of
molar volume between solute and water. Below, we will adjust this
contribution to the free energy to account for exclusion of sugar
from the crystalline phase.

The other contribution to the free energy, f /, enables the coex-
istence of two phases: the ice crystal phase, and the unfrozen sugar
solution. To this end, we use the Cahn–Hilliard formulation with a
double well potential – where the energy barrier is temperature
dependent [7]:

f /
RT

¼ 2H/2ð1� /Þ2 þ j
2
ðr/Þ2 þ XðT � TeqÞgð/Þ ð7Þ

with g0ð/Þ � dðxÞ ¼ hð/ÞN with hð/Þ ¼ 4/ð1� /Þ and N an integer
number. g0ð/Þ approximates the Dirac-delta function, and thus
gð/Þ approximates the Heaviside function. Teq is the (local) freezing
temperature of the aqueous solution, which depends on the local
sugar concentration w, as determined by the FH theory [17]. The last
term is inspired by the snow model of Plapp and coworkers [22].
The form of the free energy functional f / is explained in more detail
below.

The supercooling DT ¼ T � Teq will tilt the double well poten-
tial, as shown in Fig. 1. Between the two wells there is an energy
barrier of height, which equals, Dh ¼ H=8 at T ¼ Teq. If the solution
is supercooled, the potential well of the solid phase (/ ¼ 1) lowers,
as well as the energy barrier Dh. If the potential well of the solid
phase is lower than that of the liquid phase, this phase is thermo-
dynamically favoured. Only the solid phase is stable, and the liquid
phase will be metastable or supercooled.

The squared gradient term in the free energy functional repre-
sents the surface free energy of the solid–liquid interface. The
order parameter / will develop into a tanh profile, for which the
squared gradient term is an approximation of the delta-function
[11]. The thickness of the diffuse interface thickness f is related
to the height of the energy barrier H, and the interfacial free energy
j. Via the properties of gð/Þ the wells of the potential remain at
/ ¼ 0 and / ¼ 1 [23]. The free energy difference between the
two wells equals the free energy difference between solid and liq-
uid phase and must remain smaller than the height of the energy
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