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a b s t r a c t

This investigation examines transient heat generation and the thermal-mechanical response of epoxy
resin subjected to quasi-static and dynamic compression. High-speed optical and infrared imaging sys-
tems are used to obtain visual and thermo-graphic images during dynamic tests. It is found that the
post-yield response of epoxy resin depends on whether the loading is quasi-static or dynamic. Results
from quasi-static compression show that yield is followed by post-yield softening, plastic flow and final
hardening. An obvious difference for high-rate compression is that post-yield softening persists without a
final hardening phase. From the high-speed infrared images, localizations of adiabatic heating and tem-
perature distribution were identified morphologically in high strain rate compressions. Dynamic
mechanical analysis (DMA) and quasi-static data for elevated temperatures confirm the temperature
sensitivity of epoxy resin. By calculating the different pixel numbers in infrared images at the different
temperature values, the inelastic heat fraction is estimated to be about 0.45 for the epoxy. A simple
constitutive relationship that describes the mechanical behavior of the polymer, such as elasticity–plasticity,
post-yield softening and final strain hardening for quasi-static loading, as well as adiabatic-heating
softening for dynamic loading, is proposed.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Polymeric materials are extensively used in engineering appli-
cations, especially as matrix material in high-performance fiber-
reinforced composites or nano-particle reinforced composites.
Polymer composites are becoming increasingly important in aero-
space, transportation, sports and civil engineering components.
Epoxy resin is the most common used polymer for the polymer
composites manufacturing. Unlike thermoplastic polymers such
as polyethylene, polycarbonate and polypropylene, cured epoxy
resins are thermosetting polymers. Their highly cross-linked
molecular structure results in a relatively high modulus, high
strength, low creep and thermal stability. Since the mechanical
properties of composites are affected by the properties of the
matrix, the role of epoxy resins in polymer composites is critical.
The nonlinear relationship between mechanical properties and
strain rate, temperature, pressure and time for polymers, is also
present in epoxy resins. Such behavior has been extensively stud-
ied both experimentally and via constitutive modeling. The
mechanical behavior of some similar epoxy resins may differ

because differences in curing agents or curing processes affect
their mechanical properties. Nevertheless, many studies [1–8] on
epoxy resins subjected to different loading conditions, have
revealed stress–strain curves that display a common trend – an ini-
tial nonlinear increase in stress until a peak is reached, followed by
post-yield softening, plastic flow and a final hardening phase.

In aerospace, transportation, sports and civil engineering appli-
cations, epoxy resin composite components are likely to experi-
ence shock and impact loads during usage. Therefore, it is useful
to identify the impact and high-strain-rate properties of epoxy
resins. The split Hopkinson bar testing technique [9–11] provided
an important approach for impact dynamics of materials under
strain rates usually from 102 to 104 s�1. For epoxy resins, much
progress focus on the impact properties has been made, such as
impact-induced voltage generation [12], three-point-bending
impact fracture toughness [13], strain-rate sensitivity at small
strain [14], multiaxial loading at high/low temperatures [15],
adiabatic temperature measurement [16], thermomechanical
behavior [17], high-strain-rate tensile properties [6,18],
high-strain-rate shear properties [6,18,19], high-strain-rate
compression properties [6,20], radial constraint effect [21],
high-strain-rate molecular dynamics simulations [22] et al.
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Table 1
Chemical components and curing process for epoxy resin.

Mark Component Viscosity at room temperature (MPa s) Epoxy equivalent value (eq/100 g) Mixing ratio Curing process

JC-02A Bisphenol A epoxy resin 1000–3000 0.50–0.53 100:85:2.5 90 �C 2 h, 110 �C 1 h, 135 �C 4 h
JC-02B Modified anhydride 30–50 /
JC-02C Serotonin 1–5 /

Fig. 1. Typical quasi-static and high-rate behavior of the epoxy resin.
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