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a b s t r a c t

Despite the wide applications of the linear and non-linear Robin boundary constraints in thermal simu-
lations, not much works are reported on their implementation in lattice Boltzmann framework. In present
work, counter-slip energy approach is employed to derive kinetic level equations, representing two par-
ticular cases of Robin boundary conditions; convection and combined convection and surface radiation.
Loss of generality is avoided in the study and the terms accounting for boundary movement or viscous
dissipation effects are incorporated, too. Utilizing a D2Q9 lattice structure, the derived equations are val-
idated with 1D and 2D analytical solutions for conduction heat transfer problems in a square slab. Results
of analysis show a first order rate of convergence for the convective boundary condition, while second
order rate is found for combined convection and surface radiation constraint.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the convincing success of the lattice kinetic theory and
most remarkably the lattice Boltzmann method (LBM) [1–5], much
efforts has been made on its extension to more complex circum-
stances including those with more intricate geometries, turbulence
conditions, non-isothermality and multiphase flows with interfa-
cial dynamics. In the recent 20 years, a number of proposals have
been made to answer the problem of non-isothermality (see for
example [6–8]). In general the recommended schemes are classi-
fied into three categories; Multi-Speed (MS) approaches [9–11],
double distribution function (DDF) models [12–15] and hybrid
methods [16–18]. The previously proposed MS approaches mainly
rely on the computation of the second velocity moments of particle
distribution functions to extract thermal flux information. How-
ever, due to some unphysical mode-couplings [19], they suffer
seriously from numerical instabilities. Prandtl (Pr) number limita-
tions and narrow temperature range of applicability are other
drawbacks of the method. Additionally, while the more recent
hybrid methods may present better performance in low speed,
velocity-energy decoupled flows, they still lack elegance, consider-
ing the non-kinetic foundations. In an attempt to redress the defi-
ciencies of the aforementioned methods, DDF approaches are

introduced based on the idea of doubling the degrees of freedom
and employing two different distribution functions for energy
and particle number density. The improvements are very interest-
ing; higher numerical stability, adjustable fluid Pr number, capabil-
ity to include viscous dissipation and compression work effects and
fully kinetic foundation. The price to pay is the doubled computa-
tional costs.

The choice of accurate boundary condition is the other hot topic
in today’s thermal LBM research. Due to the essential similarities
between the two evolution equations in DDF approach, extension
of the advancements in hydrodynamic boundary treatment to
thermal models has been regarded in a number of surveys. As a
pioneering try, He et al. [14], modified the well-known rule of
bounce back of non-equilibrium parts [20] to be employed with
their thermal model. Although they simulated constant tempera-
ture (Dirichlet condition) case in their paper, but Tang et al. [21]
showed that the method could be easily utilized for adiabatic con-
ditions through a finite difference scheme. In another work by Tang
et al. [22], and being highly inspired by the more general form of
the rule introduced in [23,15], they employed a first order extrap-
olation scheme to approximate non-equilibrium distribution func-
tions from the neighboring interior nodes. The authors reported
that the approach successfully simulates Dirichlet and Neumann
constraints; this occurred by means of a Dirichlet strategy. A few
years later, Hiorth et al. [24] adopted the original bounce back of
non-equilibrium parts rule but with an opposite sign for the
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adverse direction (the reader interested in reasoning behind the
choice of opposite sign is referred to [25]) and by using Chap-
man–Enskog analysis derived expressions for linear Robin bound-
ary condition in diffusion equation of NMR relaxation. They
claimed that the method may be generalized to convective–diffu-
sive problems if the velocity of the fluid could be ignored at the
boundary. In another try, Liu et al. [26] extended the hydrody-
namic boundary condition suggested in [27] and introduced
Dirichlet and Neumann thermal boundary conditions by assuming
unknown distributions being functions of local known energy dis-
tributions and an additional parameter called corrector. The results
of their numerical simulations demonstrated the second order con-
vergence accuracy of the scheme. The bounce back boundary con-
dition [28] or its derivatives have also been widely extended to
thermal LBM, despite the reports [29] claiming its erroneous nat-
ure in some thermal applications [30]. Chaabane et al. [31] tested
several types of boundary conditions including Neumann, Dirichlet
and convective heat transfer (linear Robin condition) constraints
for a conduction problem in a square slab. Despite claiming the
employment of bounce back concept in boundary treatments, nei-
ther detailed methodology nor any resulted equation is presented
in their work. In an extensive work by Huang et al. [30], five differ-
ent schemes including an extension of the regularized boundary
method [32], simple extrapolation method, non-equilibrium
extrapolation method, simple bounce-back method and an Equilib-
rium method were proposed. They concluded that the regularized
boundary condition shows the best performance (second-order) in
terms of spatial accuracy for first type or second type boundary
constraints. Li et al. [33,34] has also used the bounce back concept
but in combination with an interpolation scheme to impose Dirich-
let, Neumann or linear Robin conditions on straight or curved
boundaries. Considering an older research by Yoshida and Nagaoka
[35], reveals that they [33,34] are highly inspired by the bounce
back approach employed there. Note that both works claim that
the idea leads to methods with a nearly second order convergence.
In a more recent work, Zhang et al. [36] extended Ladd’s [37] half-
way bounce back scheme and the macroscopic gradient boundary
conditions in [38] to find expressions for a convection–diffusion
equation with arbitrary linear mixed-type constraints. Although
they claim that their method can handle moving boundaries, but
since they assume that non-equilibrium portions of distribution
functions take opposite signs for adverse directions, Chen et al.
[39] argued the applicability to non-static boundaries. Following
the introduced method in [36], Chen et al. [40] improved the spa-
tial resolution of the scheme by the employment of the midpoint
bounce back technique [41] and an accurate form of finite differ-
ence method [42]. Their key idea is to make the calculations based
upon the midpoint value of a boundary lattice link by an interpo-
lation or extrapolation method. The reported results from simula-
tion analysis reveal a geometry-depended order of accuracy,
varying between unity and 2. As a more general framework on the-
oretical study of boundary conditions, Ginzburg [43] addressed a
multi-reflection approach to model Dirichlet or Neumann time
dependent constraints for advection and anisotropic dispersion
equations for any arbitrary shaped surface. The presented idea is
to tune the symmetric part of equilibrium functions to reach a
second- or third-order of accuracy for Dirichlet boundary condi-
tions, while employing the anti-symmetric part for normal flux
specification.

The studies on boundary treatment for a convection diffusion
equation have not been restricted to those of thermal models. A
quick survey in the literature shows that various models have also
been proposed for solute transport and concentration dynamics at
interfaces (see for example [25,36,40,44–47]). However it should
be noticed that although the convection diffusion equation is very
similar for both solute and energy transport cases, but since addi-

tional terms representing viscous dissipation and compressional
work are also present in many energy models, their application
(without further modification) to solute transport cases may result
in mass conservation problems.

In addition to the aforementioned models, where generally
are constructed based on common ideas like bounce back con-
cept, non-equilibrium extrapolation, simple interpolation or
extrapolation, or in a more generic framework the multi-
reflection method, D’Orazio et al. [48–50] followed Inamuro
et al. [51] counter-slip approach to formulate the first type
and second type boundary constraints and they simulated for
the first time a non-zero heat flux boundary condition in
LBM. Note that since this approach guarantees the exact satis-
faction of the specified temperature or heat flux at the bound-
ary, it may be regarded as the most accurate one in terms of
boundary node analysis [22]. On the other hand, compared to
the previous methods, counter-temperature does not rely on
any extrapolation, interpolation or differential method for flux
and concentration derivation which may be important in some
cases like modeling of nonlinear conditions. Based upon the
foresaid facts and also considering the approach’s capability to
handle moving boundaries [52] and still it’s clarity in account-
ing for viscous dissipation and compressional work sources,
the authors are motivated to perfectly devote the current
research to applications of this method in modeling of linear
and nonlinear mixed type boundary constraints for flat surfaces.
It should be stressed here that despite the recent proposals on
linear Robin constraints for convection diffusion equation, the
non-linear case which is very essential to problems like those
of surface radiation or combined external convection and radia-
tion (see [53]) still lacks enough research and to the best
knowledge of the authors has been widely neglected so far
from an LBM point of view. Accordingly the remainder of the
article is organized as follows. In Section 2, the DDF model that
the current work is constructed on, is explained and the basic
equations are presented. In Sections 3.1 and 3.2 the convective
boundary condition (linear Robin constraint) and combined sur-
face radiation and convection boundary condition (non-linear
Robin constraint) are discussed mathematically and a set of
equations are derived for their representation in LBM scheme.
Finally in Section 4, the proposed equations are validated with
2D and 1D analytical solutions.

2. Thermal model

Among the numerous DDF models, the widely accepted method
proposed by He et al. [14] is regarded here. Note that although, a
number of simplified versions [14,54,55] of the original approach
are also available, but since they mainly neglect viscous dissipation
or compressional work effects, the original scheme is adopted to
avoid loss of generality. It is worth noting that a discussion on
implementation of the model with Dirichlet or Neumann con-
straints is presented in previous papers [50,56] and the interested
reader could refer to if necessary.

Letting f being the particle number density distribution func-
tion, standard kinetic moment gives:

qð~x; tÞ ¼
Z

f ð~x;~n; tÞd~n ð1Þ

qð~x; tÞ~Uð~x; tÞ ¼
Z

~nf ð~x;~n; tÞd~n ð2Þ

And the continuous evolution equation for f is defined by Boltz-
mann equation:

@tf þ ð~n � rÞf ¼ Xðf Þ ð3Þ
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