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a b s t r a c t

The polynomial Trefftz method consists of the polynomial type solutions as bases, providing a cheap
boundary-type meshless method to solve the heat conduction equation, since the bases automatically
satisfy the governing equation. In order to stably solve the backward heat conduction problem (BHCP),
and the inverse heat source problem (IHSP) together with the boundary condition recovery problem
by a polynomial Trefftz method, which are both known to be highly ill-posed, we introduce a
multiple-scale post-conditioner in the resultant linear system to reduce the condition number. Then
the conjugate gradient method (CGM) is used to solve the post-conditioned linear system to determine
the unknown expansion coefficients. In the multiple-scale polynomial Trefftz method (MSPTM) the scales
are determined a priori by the collocation points on space–time boundary, which can retrieve the missing
initial data, the unknown time-dependent heat source as well as the boundary condition rather well.
Several numerical examples of the inverse heat conduction problems demonstrate that the MSPTM is
effective and accurate, even for those of severely ill-posed inverse problems under very large noises.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let us consider a one-dimensional heat conduction equation:

utðx; tÞ ¼ auxxðx; tÞ; ðx; tÞ 2 X :¼ f0 < x < ‘;0 < t 6 tf g; ð1Þ
where the subscripts x and t denote the partial differentials with
respect to x and t, respectively. For the direct problem we
specify boundary conditions and initial condition on
C ¼ fx ¼ 0;0 6 t 6 tf g[ fx ¼ ‘;0 6 t 6 tf g [ f0 6 x 6 ‘; t ¼ 0g. In
contrast, for the backward problem we specify boundary
conditions and final time condition on C ¼ fx ¼ 0;0 6 t 6 tf g[
fx ¼ ‘;0 6 t 6 tf g [ f0 6 x 6 ‘; t ¼ tf g.

Suppose that the solution of Eq. (1) is in the following form:

uðx; tÞ ¼ expðcxþ c2atÞ; ð2Þ
where c is a small parameter, which can be expanded in terms of c
by using the Taylor series:

uðx; tÞ ¼
X1
n¼0

pnðx; tÞ
cn

n!
: ð3Þ

On the other hand we have

expðcxÞ ¼
X1
n¼0

cnxn

n!
; ð4Þ

expðc2atÞ ¼
X1
k¼0

aktkcn

k!
; n ¼ 2k: ð5Þ

Inserting them into Eq. (2) and equating it to Eq. (3) we can
derive

pnðx; tÞ ¼ n!
X½n=2�
k¼0

aktkxn�2k

k!ðn� 2kÞ! ; ð6Þ

which is known as the heat polynomial, and can be verified satisfy-
ing Eq. (1) automatically as follows:

@pnðx;tÞ
@t

¼n!
X½n=2�
k¼0

kaktk�1xn�2k

k!ðn�2kÞ! ¼n!
X½n=2�
k¼0

ðkþ1Þakþ1tkxn�2k�2

ðkþ1Þ!ðn�2k�2Þ!¼n!
X½n=2�
k¼0

akþ1tkxn�2k�2

k!ðn�2k�2Þ! ;

@2pnðx; tÞ
@x2

¼n!
X½n=2�
k¼0

ðn�2kÞðn�2k�1Þaktkxn�2k�2

k!ðn�2kÞ! ¼ n!
X½n=2�
k¼0

aktkxn�2k�2

k!ðn�2k�2Þ! :

Upon multiplying the second equation by a, it follows that

@pnðx; tÞ
@t

¼ a
@2pnðx; tÞ

@x2
;

which is the heat Eq. (1).
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The heat polynomials were introduced by Rosenbloom andWid-
der [1], and further described byWidder [2–4]. A more comprehen-
sive discussion of the heat polynomial analogies for higher order
evolution equations can be seen in [5]. The usage of polynomial
expansion as a trial solution of linear partial differential equations
(PDEs) is simple and is straightforward to derive the required linear
algebraic equations (LAEs) to determine the expansion coefficients
after a suitable collocation of points in the problem domain and
boundary. However, it is seldom used as a major numerical tool
to solve the linear PDEs. The main difficulty is that the resultant
LAEs are often highly ill-conditioned. How to reduce the condition
number of the linear system is an important issue when one applies
the polynomials expansion method to solve the linear PDEs.

As a received heat conduction system, it may be already in the
situation of on-line service, and we cannot measure the initial tem-
perature because the initial time is passed. For such a system,
although we can exactly know the boundary conditions, but the
initial condition is absent, which renders the backward heat con-
duction problem (BHCP) not easy to be solved. The BHCP is one
of the inverse problems for the applications in heat conduction
engineering to recover the past history of temperature. The inverse
problems are those in which one intends to determine the causes
for a desired or observed effect. One of the characterizing proper-
ties of many inverse problems is that they are always ill-posed.
Mathematically speaking, the linear operator generated from the
BHCP is a compact one with an infinite rank, whose inversion is
discontinuous, and thus, the solution that continuously depends
on the given final time data does not exist.

The numerical schemes adopted for the BHCPs are usually
implicit. The explicit ones are apparently not very effective. Mera
[6] has mentioned that the BHCP is hard to be solved by using
the classical numerical methods and requires special techniques
to solve it. In order to solve the BHCP, there appeared certain pro-
gresses in this issue, including the boundary element method [7],
the iterative boundary element method [8,9], the Tikhonov regu-
larization technique [10,11], the operator-splitting method [12],
the lattice-free high-order finite difference method [13], the
method of fundamental solutions [6,14,15], the third order
mixed-derivative regularization technique [16], the Fourier

regularization method [17], the three-spectral regularization
methods [18], and the radial-basis functions method [19]. Clark
and Oppenheimer [20] and Ames et al. [21] have used a quasi-
reversibility method to approximate the solution of the BHCP.

Since 2004 we have developed several methods for solving the
BHCP, namely, the group preserving scheme [22], the backward
group preserving scheme [23], Lie-group shooting method
together with the quasi-boundary regularization [24], the Fred-
holm integral equation method [25,26], the Lie-group shooting
method in the time direction [27], the Lie-group shooting method
in the spatial direction [28], the fictitious time integration method
[29], a self-adaptive Lie-group shooting method [30], the method
of fundamental solutions with conditioning by a new post-
conditioner [31], a two-stage group preserving scheme [32], a
GLðn;RÞ shooting method [33], and a Lie-group differential alge-
braic equations method [34]. Tadi [35] has discussed a different
kind of BHCP by imposing two extra heat flux boundary conditions.
Recently, Liu [30] has solved the BHCP without resorting on final
time condition and overspecified boundary conditions; moreover,
Liu [36] can solve the high-dimensional BHCP by using a multi-
ple/scale/direction polynomial Trefftz method.

The remaining portion of the current paper is arranged as fol-
lows. In Section 2 we introduce the multiple-scale polynomial
Trefftz method by using a derived formula to determine the multi-
ple scales. The problem statement of the BHCP is given in Section 3,
whose resulting linear system is solved by using the conjugate gra-
dient method (CGM), and the numerical examples are given in Sec-
tion 4. Numerical solutions for the simultaneous recovery of the
time-dependent heat source and boundary condition are given in
Section 5, where we can find that the new method is highly stable
and very accurate, although under a large noise 20%. Some conclu-
sions are drawn in Section 6.

2. The multiple-scale polynomial Trefftz method

Let

uðx; tÞ ¼
Xm
i¼1

cipiðx; tÞ þ cn; ð7Þ

Nomenclature

A coefficient matrix in Eq. (8)
ai ith column of A
b the right-hand side in Eq. (8)
b1 :¼ ATb
ci expansion coefficients
c n-dimensional vector of coefficients
D :¼ ATA
gðxÞ initial value of u
g0ðxÞ initial value of v
hðtÞ right-boundary value of u
HðtÞ time-dependent heat source
‘ length of rod
m the highest order of heat polynomials
n :¼ mþ 1
nc the number of collocation points
piðx; tÞ heat polynomial
P post-conditioning matrix
q0ðtÞ left-boundary value of v
q‘ðtÞ right-boundary value of v
RðiÞ random numbers
s noise level
si multiple-scale

t time
tf final time
uðx; tÞ temperature
u0ðtÞ left-boundary value of u
uT ðxÞ final time temperature
vðx; tÞ :¼ uxðx; tÞ
x space variable

Greek symbols
a heat conductivity in Eq. (1)
X a bounded region
C a boundary
c a small parameter
r noise level
e convergence criterion

Subscripts and superscripts
i index
k index
T transpose
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