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a b s t r a c t

Recently, analytical solutions for parallel-plate moving bed heat exchangers have been obtained by
means of integral transform methods. This study extends the analysis to vertical pipe geometries due
to their important industrial applicability. Steady-state energy equations, for systems operating under
co- and counter-current conditions, are formulated and nondimensionalized. Laplace transforms and var-
ious forms of the expansion theorem are then used to solve the problems, resulting in temperature func-
tions for the solids and fluid domains. Limiting cases are then analyzed and the solutions are shown to
simplify to various expressions in the literature. A graphical analysis is also presented, depicting repre-
sentative behaviors of the solutions and addressing their physical consistency.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last decade, interest has grown in the application of
moving bed technologies in processes involving chemical separa-
tions, recuperation of petroleum products, drying of food materials
[1], and flue gas cleaning [2]. In many of these processes, heat
transfer to and from these moving beds of solids is of critical
importance. Specific examples exist in the recovery of oil shale,
drying of brown coal, cooling of ore cinders [3], production of
nickel [4,5], and food sterilization [6]. In a very recent application,
energy transfer from a moving bed of ceramics and natural stones
has been explored as a cost effective candidate for delivering off-
line thermal energy for steam and electricity generation [7]. This
wide industrial presence drives the need for on-going investiga-
tions into moving bed transport phenomena.

A particular unit operation used for energy exchange in the
above examples is the moving bed heat exchanger (MBHE). In
these systems, heat is conveyed between a moving bed of particles
and a secondary heating or cooling fluid. In general, MBHEs are
attractive due to their low investment cost, energy consumption,
and maintenance requirements [1]. Their simple design, practical-
ity, and versatility also give them an advantage over competing
technologies [3].

One particular advantage of MBHEs is their ability to accommo-
date different exchanger geometries including parallel-plate, shell-
and-tube and double-pipe, while simultaneously allowing flow
arrangements extending from counter- to co-current. For some
time, thermal performance and sizing information remained
empirical [8]. Attempts to solve the convection-conduction MBHE
problem had been put forward [9], but an analytical solution was
never identified. Only recently have solutions been presented for
co-current [10] and counter-current [11] parallel-plate configura-
tions. In these analyses, the moving solids and the secondary fluid
vary in temperature as heat is exchanged between the domains.

An extension of the Cartesian analysis [10,11] to cylindrical
coordinates is important since these geometries exist in shell-
and-tube and double-pipe heat exchangers. These types of systems
have low installation costs, ease of maintenance and cleaning, and
flexibility of design [12]. Vertical pipe MBHE configurations have
been previously studied [5,9,13,14], but analytical solutions
remain absent. In particular, counter-flow configurations are of
critical importance since they yield increased thermal gradients
reducing area requirements and capital investments [15].

The objective of this work is to present the solutions to the non-
homogeneous steady convection-conduction equations describing
both co-current and counter-current vertical pipe MBHEs. The
solutions follow the methodologies of recent parallel-plate studies
[10,11]. Although these cylindrical solutions are analogous to those
found in Cartesian coordinates [10,11]; the procedures for obtain-
ing them, and the functions associated with them are quite
different.
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In this paper, the formulation of the coupled governing energy
equations, with boundary conditions, is presented, along with their
nondimensionalization. Laplace transforms are applied to obtain
analytical solutions for the solids and fluid temperatures. Limiting
cases are then analyzed and the solutions are contrasted with var-
ious expressions in the literature. Finally, a graphical analysis
explores the consistency of the solutions.

2. Model development

2.1. System description and assumptions

Consider particulate solids and a heating/cooling fluid moving
co-currently or counter-currently in the vertical pipe system
shown in Fig. 1. Important system dimensions include the pipe
inner radius Ri, the outer radius Ro, and the height H. The solids
move inside the pipe with a velocity us, and enter at a constant
temperature Tsi. The fluid moves with mass flow rate _mf , and
enters at a temperature tfi.

The assumptions made in the energy model development are as
follows:

1. Steady conditions, where the moving solids and interstitial fluid
are assumed to be in local thermal equilibrium. As shown in
previous publications, local thermal equilibrium has been found

to be valid for a wide number of materials, even highly conduct-
ing metals, as long as the interstitial fluid phase is entrained
[3,5,9,13,16–19] as considered here.

2. The thermo-physical properties of the solids (thermal conduc-
tivity ks, density qs, and specific heat capacity Cps) are effective
and constant. This assumption has been validated for vertical
pipe systems for numerous porous materials [5,13,14].

3. Heat conduction in the solids occurs in the radial r-direction
[9,13,14], while convective transport occurs in the axial
x-direction. Transfer of energy in the solids in other directions
is assumed negligible.

4. The solids move with constant velocity in the x-direction. This
important assumption has been applied and validated in
numerous moving bed studies for flow parallel to an adjacent
wall [3,5,13,18,20].

5. The temperature of the solids at r ¼ 0 is finite.
6. Convective energy transport in the fluid occurs in the

x-direction only, and the thermo-physical properties (i.e. den-
sity qf , specific heat capacity Cpf ) are assumed constant.

7. A constant overall heat transfer coefficient Ui, defined on the
basis of the internal area of the pipe, connects energy transport
between the solids and fluid domains. It is comprised of
resistances in series due to contact, wall conduction and con-
vective transport into the fluid. In cylindrical coordinates, Ui

takes the following form:

Nomenclature

a constant, ¼ NTU � C
Acond axial heat conduction area in the wall, p R2

o � R2
i

� �
Aflow cross-sectional area of solids flow, ¼ pR2

i
Ahx;i area of heat exchange based on the internal pipe radius
aj jth eigenvalue for a Biot number of zero

b constant, ¼
ffiffiffiffiffiffiffi
2�Bi
NTU

q
Bi Biot number, ¼ Ui �Ri

ks

C Capacity ratio, ¼ _ms �Cps
_mf �Cpf

Cpf fluid specific heat capacity
Cps solids effective specific heat capacity
H pipe height
ho convective heat transfer coefficient for the fluid
i imaginary number, ¼

ffiffiffiffiffiffiffi
�1

p
j integer number
k number of multiple sn roots in w
ks solids effective thermal conductivity
kw wall thermal conductivity
M Axial conduction number, ¼ kw

qsCps

� � ðR2
o�R2

i Þ
R2
i

1
usH

� �
_mf fluid mass flow rate
_ms solids mass flow rate
n integer number, positive
NTU Number of Transfer Units, ¼ Ui �Ahx;i

_ms �Cps
¼ 2�Ui �H

qsusRiCps

Qadv estimate of advective heat transfer rate in the solids
Qwall;cond estimate of axial heat conduction rate in the wall
Ri pipe inner radius
Ro pipe outer radius
R0
cont solids/wall contact resistance

r radial spatial coordinate
r� dimensionless radial spatial coordinate, ¼ r

Ri

s Laplace domain axial variable
sn simple roots of expansion theorem denominator

function w
Ts solids temperature function
Ts solids average temperature function

Tsi solids entrance temperature
Tso solids average outlet temperature
tf fluid temperature function
tfi fluid entrance temperature
tfo fluid outlet temperature
Ui overall heat transfer coefficient based on the internal

pipe radius
us solids velocity
x axial spatial coordinate
x� dimensionless axial spatial coordinate, ¼ x

H

Greek letters
as solids effective thermal diffusivity
DTs estimate of axial temperature difference
hf dimensionless fluid temperature function, ¼ tf�tfi

Tsi�tfi
hf ;Bi!0 dimensionless fluid temperature function for a Biot

number of zero
hf ;C!0 dimensionless fluid temperature function for a capacity

ratio of zero
hf ð0Þ dimensionless fluid temperature at x� ¼ 0ehf Laplace domain dimensionless fluid temperature

function
hs dimensionless solids temperature function, ¼ Ts�tfi

Tsi�tfi
hs;Bi!0 dimensionless solids temperature function for a Biot

number of zero
hs;C!0 dimensionless solids temperature function for a

capacity ratio of zeroehs Laplace domain dimensionless solids temperature
function

hs dimensionless solids average temperature function
kn nth eigenvalue
l positive eigenvalue for C > 1 counter-current case
qf fluid density
qs solids effective density
u expansion theorem numerator function
w expansion theorem denominator function
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