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a b s t r a c t

A mathematical model is derived for the purposes of predicting how to avoid unwanted defects, known as
ripple marks, in the casting of metal ingots; the model is based around the momentum and heat transfer
that occurs when a cooling molten metal meniscus rises between two parallel and vertical chill-mould
walls. By using asymptotic techniques, the model is reduced systematically to a form that requires the
numerical solution of a moving boundary problem involving just one partial differential equation.
Numerical results are presented, and the significance of the model for predicting the depth and spacing
of ripple marks in the casting of ingots and oscillation marks in continuous casting are discussed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The casting of metals is a well-established application of heat
and mass transfer [1–7], the understanding of which is essential
for avoiding or limiting defects that occur in industrial casting pro-
cesses. Ripple marks are one example of such defects. Also called
surface marks, wrinkles, striations or grooves, they are defects that
develop on the surface of static ingots during casting; in general,
they have a certain spacing, typically of the order of millimetres,
and depth, typically of the order of tens of micrometres, and lie
parallel to the meniscus surface. Although interest in ripple marks
had subsided considerably since the early 1980s [8–10], there is
now renewed interest in them [11], because the mechanism for
their formation is thought to be related to that for the formation
of oscillation marks in the much more prevalent continuous cast-
ing process [12–15]. In both ingot and continuous casting, there
is a need to either minimise or avoid such marks completely, and
mathematical modelling represents one way to gain insight into
how this can be achieved.

In considering the formation of such marks, a knowledge of
what happens in the region where the molten metal meniscus
meets the cold mould wall is thought to be critical. However, the
situation prevalent in continuous casting, where there is the com-
bination of a solidifying meniscus and an oscillating mould, makes
for a challenging modelling problem; in this context, the case of
ingot casting, wherein the mould is stationary, represents a more

suitable starting point. Even so, there appear to be no models avail-
able for this problem. Moreover, whereas a model predicting the
depth and separation of ripple marks as a function of process para-
meters would be of scientific interest, it is of technical interest to
know rather how ripple marks can be avoided; this will be the pre-
mise of this paper.

Although there are other ways to generate ripple marks [9], we
focus here on the uphill casting-type configurations considered by
Tomono et al. [8] and Jacobi and Schwerdtfeger [11]. A schematic is
given in Fig. 1, which shows melt passing down from a tundish
through the upper opening of a feeding channel, entering into an
interior mould space through a hole at the bottom and subsequent-
ly rising. As the mould is cooled, the melt will also cool, leading
eventually to the onset of solidification at the mould walls.
Ripple marks are believed to occur via either an overflow or a flow-
back mechanism. In both cases, the shell solidifies along the curved
meniscus profile to form a pointed tip. If the shell is strong enough
to avoid deformation, the melt meniscus overflows the tip; other-
wise, if the shell is too weak, its tip bends back under the rim pres-
sure, i.e. a folding mechanism. As stated in the previous paragraph,
our goal will be to determine how this situation can be avoided;
however, the results of this analysis can nevertheless become the
starting point for future modelling of actual ripple mark formation.

The layout of the paper is as follows. In Section 2, we formulate
a mathematical model for the fluid flow and heat transfer in a melt
with a rising meniscus; in Section 3, we nondimensionalize the
model and identify the key dimensionless parameters. In
Section 4, based on the characteristic values of these parameters,
we formulate a reduced asymptotic model that leads to a moving
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boundary problem; the numerical method used to solve it is
explained in Section 5. The results are presented in Section 6 and
conclusions are drawn in Section 7.

2. Model equations

In order to understand the interaction of momentum and heat
transfer with the motion of the rising, and possibly deforming,
molten metal meniscus, we develop a simplified transient two-
dimensional model for the process. We dispense with the full
geometrical details of the interior mould space and consider a

vertical channel instead. The situation is then as depicted in
Fig. 2 where molten metal at a temperature Tcast , which is greater
than the melting temperature Tmelt , is confined and initially at rest
between the vertical mould walls that are a distance 2W apart; the
melt forms a meniscus which has the profile y ¼ h0ðxÞ, with x and y

Nomenclature

B dimensionless constant, kPe�1=2

Bcrit critical value of B
Bo Bond number, qgW2=cLG
C constant determined by Eq. (20) [Pa]
C� dimensionless constant determined by Eq. (20) [Pa]
cp specific heat capacity [J kg�1 K�1]
Fr Froude number, V2

cast=gW
g gravitational acceleration [m s�2]
h meniscus height [m]
H dimensionless meniscus height
�H scaled dimensionless meniscus height
h0 initial meniscus height [m]
H0 initial dimensionless meniscus height
k thermal conductivity [W m�1 K�1]
Le latent heat of vapourization [J kg�1]
M molecular weight [kg mol�1]
p pressure [Pa]
P dimensionless pressure
pa atmospheric pressure [Pa]
Pe Péclet number, qcpVcastW=k
Q mould-wall heat flux profile [W m�2]
Q dimensionless mould-wall heat flux profile
Q½ � characteristic scale for Q [W m�2]

Re Reynolds number, qWVcast=l
t time [s]
T temperature [K]
Tamb ambient temperature [K]
Tcast casting temperature [K]
Tmelt melting temperature [K]
u x-direction velocity component [m s�1]

U dimensionless x-direction velocity component
v y-direction velocity component [m s�1]
V dimensionless y-direction velocity component
Vcast casting speed [m s�1]
V0 initial volume of melt per unit length [m2]
V0 dimensionless V0=W2

W half-width of the mould region [m]
x horizontal coordinate [m]
X dimensionless horizontal coordinate
~X scaled dimensionless horizontal coordinate
y vertical coordinate [m]
Y dimensionless vertical coordinate
�Y scaled dimensionless vertical coordinate

Greek symbols
e radiation heat transfer emissivity of the molten metal

surface
g transformation variable, Y= Y0 þ sð Þ
h dimensionless temperature
H dimensionless temperature variable in Eq. (80)
k dimensionless parameter, Q½ �W=k Tcast � Tmeltð Þ
l dynamic viscosity of molten metal [kg m�1 s�1]
n similarity variable, ~X=s1=2

q molten metal density [kg m�3]
r Stefan–Boltzmann constant, 5.6704 � 10�8 W m�2K�4

cLG liquid–gas surface tension coefficient [N m�1]
cSG solid–gas surface tension coefficient [N m�1]
cSL solid–liquid surface tension coefficient [N m�1]
s dimensionless time, t= W=Vcastð Þ
/c contact angle [�]

Fig. 1. Schematic for uphill casting. Fig. 2. Schematic of an idealised model for uphill casting.
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