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a b s t r a c t

The Lattice Boltzmann method has been further developed for flow and heat transfer computations in
terms of two distribution functions. A modified boundary scheme for heat transfer has been proposed
for curvilinear fluid–solid interfaces, based on a weighted relaxation time. Weight coefficients depend
on the interface location with respect to the regular lattice. The approach has been validated for two cases
in a simple and more complex geometry: a non-isothermal flow past a single circular cylinder and in sim-
ple porous (granular) media. Computations have been performed with the use of the new boundary
scheme for curvilinear interfaces and compared to a standard scheme known from the literature. For
the circular cylinder case, results for the local and averaged Nusselt numbers are validated with the out-
come of other numerical methods and with experimental data. For the more complex geometry, two con-
figurations are considered: a regular array of square cylinders and a random arrangement of circular
cylinders to simulate a granular medium. The results for the Nusselt number are compared, after a suit-
able volume averaging, with available semi-empirical correlations.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Coking is a widely used industrial process to obtain chemically
cleaner coal and coking gas. Aside of fluid flow in a granular med-
ium, heat transfer and heterogeneous chemical reactions at the
level of coal grains govern the changes of their size and shape as
well as devolatilisation with a growing temperature of the med-
ium. The physico-chemical and geometrical complexity of these
phenomena imply that more traditional tools and software of
computational fluid dynamics (CFD) become prohibitively expen-
sive as far as detailed modelling is concerned. The CFD approach
is mostly performed at the macroscale level only, subject to
semi-empirical closure relationships [1,2]. Hence the idea of a mul-
tiscale approach with a microscopic (single-pore level) computa-
tion of representative element of volume (REV), followed by a
macroscopic (system-level, unsteady 1D/2D) CFD analysis.

To solve the problem of flow and heat transfer, we have chosen
the Lattice Boltzmann method (LBM), also because of its ability to
deal with complex and time-varying solid–fluid interfaces, i.e. the
boundaries of grains. As a first development step of the approach,
we have applied the LBM to simulate fluid flow [3] past a cylinder

and in a simple granular (or porous) medium. The present work is a
logical second step towards the physically-sound description of the
process, dealing with non-isothermal flow in the same geometry.
As a next-term objective, we will address the thermal dilatation
of grains (following a first attempt reported in [4]) and we will
include chemical reactions in the medium to finally use resulting
closure relationships in a physically sound, macroscale simulation
of the coking process.

The LBM is an approach developed in the early 1980s, designed
originally as an extension of cellular automata [5] to eliminate a
large numerical noise. It is based on the Boltzmann equation [6]
with subsequent discretization. The method has proven suitable
for simulation of viscous and nearly incompressible fluid flows
[7,8] in simple [9,10] and complex geometry [11,12], as well as
heat transfer [13,14], also with addition of chemical reactions
[15,16]. In those cases, suitable distribution functions (for the den-
sity, internal energy or chemical species) with a variety of bound-
ary schemes have been used [7].

In early attempts of solving heat transfer, the single distribution
function was used. An important example of a successful imple-
mentation of that approach for combustion phenomena was pre-
sented by Yamamoto et al. [15]. A brief review of the literature
where a single distribution function has been used for heat transfer
modelling is offered by Chen and Doolen [8]. Implementations
with a single distribution function are still under development:
Yuan and Schaefer [17] proposed a thermal LBM for two-phase
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flow and reported a stable, accurate and numerically efficient
scheme.

A first proposal for modelling heat transfer with additional
internal energy density distribution function (IEDDF) was made
by He et al. [13]. Their formulation, although stable and accurate,
contained complicated differential terms. A simplified model was
presented by Peng et al. [18]. The use of IEDDF brings some issues
connected with fluid–solid interfaces. The basic thermal condition
was proposed by He et al. [13]; it was successfully applied in 3D by
Peng [10]. However, in the case of variable geometry, artefacts are
observed during transition of nodes from fluid into solid, as caused
by a step change in the relaxation time. The rapid development of
the LBM also included improved boundary schemes for heat trans-
fer. A recently published paper [19] presented an interesting
attempt to treat curvilinear solid–fluid interfaces on a regular
mesh.

In the present work, we build on our experience to date with
LBM [3,4] and further develop the approach. We briefly present
the main idea of the thermal LBM with two distribution functions:
for density and internal energy. We work out a modified numerical
boundary scheme for curvilinear fluid–solid interfaces, basing on
the On-Site Interpolation-Free (OSIF) scheme for the mass dis-
tribution function [3,20]. Apart from the boundary scheme at the
interface, also the heat transfer conditions at the inlet and outlet
bring a number of implementation issues. In this work we present
simulation results with two variants of such conditions. Then, we
address heat transfer in a benchmark flow past a circular cylinder
and, next, in a general porous medium flow. In the latter case, the
LBM results for the Nusselt number are compared with some
empirical laws developed for granular/porous media (a regular lay-
out of square cylinders and a random layout of circular cylinders).

2. Lattice Boltzmann method

2.1. Governing equations for non-isothermal flow

The Lattice Boltzmann method has by now become a pretty
mature approach for simulation of fluid flow phenomena. The basic
idea of LBM, with several implementations, is well presented in the
book by Succi [7]; a good review of applications for porous media
flows has been written by Chen and Doolen [8].

The Boltzmann equation, discretized in time, space (by lattice),
and velocity (by distinction of admissible directions identified by i
subscript, see Fig. 1) on a regular square lattice, describes the evo-
lution of a relevant physical field in terms of its distribution func-
tion f iðr; tÞ. At the moment, three closely related schemes for LBM
can be distinguished. The first one is the single relaxation time
(SRT) scheme also known as Bhatnagar–Gross–Krook (BGK) LBM
where a microscopic relaxation time is related to the macroscopic
fluid viscosity. Another approach developed by d’Humières et al.
[21] considers a multiple relaxation time (MRT) scheme; some

additional cost and complexity are balanced by better stability
properties and accuracy. A third scheme (TRT, Two Relaxation
Times) uses a decomposition of the distribution function as well
as relaxation times into anti-symmetric (odd) and symmetric
(even) parts, as described in detail by Ginzbourg et al. [22]. In such
a hierarchy, the SRT model is placed as a special case of TRT which,
in turn, is a special case of the MRT model.

The crucial concept of LBM [5,7] is the discretization of the
microscopic velocity vectors, both in direction and magnitude, cf.
Fig. 1, for schemes used in 2D or 3D flows (here with 9 or 15 veloci-
ties, respectively). It is a matter of experience to choose a valid
velocity discretization scheme: for a refined scheme (a higher
number of velocity directions), an improved accuracy of the results
as well as a better stability can be obtained, along with an adverse
impact on CPU time and memory requirements. Also, improving
2D computations with more detailed discretization schemes can
be tricky (at interfaces) if one wants to model multiphysics fea-
tures in a complex geometry.

As far as heat transfer is concerned, a widely used SRT variant,
due to instabilities and limitations (constant Prandtl number
Pr ¼ 1), has been extended for LBM with two distribution functions
by He et al. [13], namely the mass density and the internal energy
density distribution functions (IEDDF) with additional relaxation
time. That scheme appears to be very stable in comparison with
previous work on heat transfer problems [10]. The method
described in [13] has been a next step of the SRT LBM develop-
ment; the main disadvantage of the proposed solution was its
complexity (cf. [14]), associated with the occurrence of gradient
terms in the evolution equation for IEDDF. A simplified method,
elaborated by Peng et al. [18], is widely used and developed also
to implement source terms [14] that appear, e.g., with chemical
reactions [15].

In the LBM, the flow density and velocity are solved for in terms
of the density distribution function f; for an exhaustive description
of the method, see [6–8,11,20,23]. The temperature field is found
from the IEDDF denoted by g, cf. [14]; the evolution of chemical
species, when applicable, is governed by a separate distribution
function, cf. [16], etc. The form of all these LB equations is similar
[7].

In our case, we proceed with simulation of fluid flow and heat
transfer. Here, we explicitly give the LBM equation for the IEDDF
gi (the form of the governing equation for f i is similar)

giðrþ eidt; t þ dtÞ ¼ giðr; tÞ � s�1
h ðgi � geq

i Þ; ð1Þ

where sh is the thermal relaxation time and geq
i represents the equi-

librium state of internal energy at ðr; tÞ; it has the following form:

geq
i ¼ hXi Ai þ Biei � v þ Ciðei � vÞ2 � Div2

h i
; ð2Þ

where v and h are the local fluid velocity and temperature, cf. Eq.
(4), and the positive coefficients Ai through Di depend only on

Fig. 1. Examples of discretization of velocity space: in 2D (8 + 1 velocity directions ei) and 3D (14 + 1 directions).
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