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a b s t r a c t

Due to the intrinsically unsteady characteristics of bubbles, the spontaneous cavitation flow essentially is
an unbalanced hydrodynamic process. The so called full cavitation model (FCM) is now widely used in the
modeling of cavitating flow, as it accounts for all the first-order effects, but assumes the typical bubble
radius is the same as the maximum possible size based on the flow balance condition between aerody-
namic drag and surface tension forces. The present paper develops a new cavitation model (named the
dynamic cavitation model, DCM) by combining an expression for the pressure-dependent bubble radius
with the FCM. The expression was derived from the Gibbs–Duhem equation and Young–Laplace equation
under the assumption of thermodynamic equilibrium. Subsequently, the DCM was implemented into a
homogeneous mixture flow model-based CFD code for cavitation flow. Verification calculations for water
cavitating flows over a hydrofoil and submerged cylindrical bodies with different forehead geometries
were performed to validate the DCM by comparing it with the experimental results. The quasi-steady
pressure distributions computed with DCM accorded well with the results of FCM and the experiments.
However, because the DCM is more sensitive to pressure than the FCM, the cavitation zone computed
using the DCM spreads out over a smaller volume than that computed from the FCM.

� 2015 Published by Elsevier Ltd.

1. Introduction

Cavitation is defined as the formation of vapor bubbles in a flow
when the local pressure falls below the liquid’s saturation vapor
pressure. It is a common phenomenon in fluidic machineries, such
as inducers, turbopumps, hydrofoils, etc. In most cases, cavitation
is undesirable, and can lead to damage, performance degradation,
and even system failure [1].

Computational methods for spontaneous cavitation have been
studied for over several decades [2–4], and can be generally divid-
ed into two categories: single-phase modeling with cavitation
interface tracking, and multi-phase modeling with an embedded
cavitation interface. In the former method, only the liquid phase
is modeled with the assumption that the vapor pressure in the cav-
ity region is constant, corresponding to the local temperature.
Although, it requires a considerable amount of preliminary knowl-
edge, many successful applications have been reported [5,6]. The
latter method models both phases via one of two approaches: a
two-fluid model, which considers separate conservation equations
for each phase [7], or a mixture model, which regards the

two-phase mixture as a single-fluid [8]. In the mixture model, since
cavitation primarily occurs in the low-pressure regions, where the
velocity is relatively high, the slip velocity between the phases is
commonly not considered in most numerical simulations, resulting
in the so called the homogeneous mixture condition [9]. In
contrast, the nonhomogeneous mixture model (also called the
drift-flow model) considers the slip velocity. Examples of this
approach are provided in the works by Rhee et al. [10], which uses
an algebraic relation to calculate the slip velocity in the modeling
of propeller cavitation. It is worth mentioning that all of the above
models for cavitation calculations are based on the pressure
equilibrium condition between the phases, which is a proven
assumption in modeling the spontaneous cavitating flow in the flu-
idic machineries. However, solutions based on a non-equilibrium
pressure distribution, such as when cavitation results from a shock,
were also reported [11,12].

The definition of the variable density field in the cavitation
process provides the primary difference between the various
approaches for the homogenous mixture model. One approach
uses a barotropic equation of state, together with the equation of
the speed of sound to couple the pressure and density [13,14].
Recently, a gas volume/mass fraction transport equation-based
method, based on the homogenous mixture model [9,15,16] has
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become popular. In this method, the information regarding the
vapor volume/mass fraction distribution is modeled by a transport
conservation equation. One apparent advantage of this model
comes from the potential for modeling the impact of inertial forces
on cavities like elongation and drift of cavity bubbles, such as is
demonstrated in the works by Singhal et al. [17], Merkle et al.
[18], and Kunz et al. [19]. These works, that can be called cavitation
models, differ in their calculation of the source terms in the vapor
fraction transport equation. Table 1 lists the mathematical expres-
sions of the cavitation models in a chronological order of publica-
tion [17–20]. The first two cavitation models are largely dependent
on empirical judgment, inducing much uncertainty for cavitation
in various fluids [8]. The IDCM model assumes that there is a clear
interface between vapor and liquid in the cavitation zone, a feature
that is not suitable for calculating cavitation in cryogenic fluids,
that display close characteristics between the liquid and vapor
phases [21]. The so called full cavitation model is capable of mod-
eling cavitation for nonthermosensitive [17] and thermosensitive
fluids [15,22], and has been adopted by the commercial CFD
software code Fluent. Here, the single bubble radius in the model
is set as the maximum possible bubble dimension assuming the
size is determined from a balance between aerodynamic drag
and surface tension forces. Note that the model does not include
the effects of the pressure on the bubble radius. In essence, the
bubble is intrinsic unsteady and periodically appears, grows,
coalesces and finally collapses in the cavitation closure zone.
Therefore, both the rate of change and the bubble size itself are
highly pressure-dependent.

The aims of the present paper are to develop a new cavitation
model, which considers the effects of the pressure on both the rate
of change and the size of the bubble. The pressure-dependent bub-
ble radius is obtained by combining the Gibbs–Duhem equation
and Young–Laplace equation with the assumption of thermody-
namic equilibrium during the cavitation process. Then, it is used
to re-calculate the radius in the FCM, thereby obtaining the
dynamic cavitation model (DCM). The CFD framework for cavita-
tion is built and solved using Fluent, based on the homogenous
mixture model and vapor fraction transport-based equation. The
DCM is implemented into the iterations by the method of
User-defined Functions. Steady cavitating flow over several geome-
tries, including the NACA66 (MOD) hydrofoil, and submerged
cylindrical bodies with different forehead geometries are modeled
with the DCM and FCM, respectively. Comparisons of the pressure
distributions with the published experimental data validated the
DCM.

2. Mathematic framework

For water cavitation, since the ratio of liquid to vapor density is
over 40000 at a temperature of 20 �C, small amounts of vaporized
liquid can make up a large pressure drop, primarily from the local
exchange between the static and the dynamic pressure. In

addition, the specific heat for a unit volume of water is large
enough to make the temperature change negligible. Therefore,
the energy equation is usually not solved, which greatly decreases
the convergence difficulties for numerical iterations. The set of
governing equations for cavitation under the homogenous mixture
model includes the conservative form of the Navier–Stokes equa-
tions, the j–e two-equation turbulence closure, and a transport
equation for the vapor mass fraction. The continuity and momen-
tum equations for steady state are given below [8]:
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Where x and the subscripts i, j and k denote the coordinate axes, t is
time, qm is the mixture density, defined as qm = qvav + qgag + ql

(1-av-ag), (subsequently, the subscript m for all mixture variants
will be omitted for brevity), a represents the volume fraction, and
the subscripts v ; g and l denote, respectively, the vapor phase,
non-condensable gas and liquid phase, u represents the velocity
vector, P is pressure, l is viscosity, and the subscript t denotes
turbulent flow. The effect of slip velocity between liquid phase
and vapor phase on the momentum exchange has been neglected,
because cavitation often occurs in the high-speed flow region.

The j–e two-equation turbulence model has been widely used
for simulating the quasi-steady sheet cavitating flow for nonther-
mosensible and thermosensible fluids [8,22]. Compared with the
standard j–e model, the realizable j–e turbulence model has shown
substantial improvements in its ability to characterize flows
with sharp streamline curvature or vortices. In this paper, the
realizable j–e model with enhanced wall treatment is used to
investigate turbulent mixing. The sensitivity of the turbulent
computations to the wall grid resolution, via wall treatments was
analyzed in our previous paper [22]. The wall treatment can provide
a better pressure distribution than the standard wall function,
because it assumes that a local equilibrium exists between the
production of kinetic energy and its dissipation rate at the
wall-adjacent cells [22].

3. Dynamic cavitation model

The distribution of the vapor mass fraction, f ; in the cavitation
process is determined by solving the transport equation as follows:
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Where _R is the net evaporation rate or condensation rate that
depends on the local conditions. Singhal et al. [17] have used the

Table 1
Cavitation models for CFD simulations.

Model and time reported Vapor evaporation item R+ Vapor condensation item R�
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