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a b s t r a c t

The study of flow in a rectangular duct, subject to a strong transverse magnetic field is of interest in a
number of applications. An important application of such flows is in the context of coolants, where the
principle issue of interest is convective heat transfer. For fully developed laminar flows, the problem
can be characterised in terms of two coupled partial differential equations. In the case of perfectly elec-
trically insulating boundaries, there is a well known analytical solution due to Shercliff, which provides
the velocity and induced magnetic field profiles. In this paper, we demonstrate analytical solutions to H1

and H2 heat transfer problems for the Shercliff case in rectangular ducts and obtain temperature profiles
and corresponding Nusselt numbers as functions of aspect ratio and Hartmann number.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The flow in a rectangular duct, subject to strong transverse
magnetic fields, is of significant interest in fusion applications
due to the use of liquid metal coolants employed in some fusion
blanket designs. Depending on the circumstances, this magnetohy-
drodynamic problem may be simplified by assuming a laminar
fully-developed flow with perfectly electrically insulating walls.
The problem then reduces to two coupled partial differential equa-
tions, whose solution was first obtained by Shercliff [1]. Shercliff
obtained explicit analytical solutions for the velocity and magnetic
field profiles for this case and his work was subsequently extended
to the case of imperfectly and perfectly conducting walls by Hunt
[2,3].

In the context of fusion blankets, of equal or greater importance
is the concomitant heat transfer, as the extraction of heat is one of
the main roles of the blanket itself. Despite the existence of ana-
lytical solutions for the velocity profile, there is as yet (to the
authors knowledge) no corresponding solution to the heat transfer
problem for the Shercliff case (and indeed the Hunt cases). Such
solutions exist for flow between parallel plates and flows in circu-
lar channels [4,5], and for 1-D heat transfer [6]. There are also some
experimental and many numerical studies of heat transfer for
Shercliff and related cases [7–12]. It should be noted that even
though numerical solutions exist, analytical solutions play an
important role in the validation of such computational codes and
can give significant insight into the underlying physics, as well as
providing approximate parameters for 1-D thermal–hydraulic

systems codes. In this article we extend an analytical solution of
the temperature profile in rectangular ducts for both the H1 and
H2 heat transfer cases, already well developed for the non-MHD
case, to the electrically insulating wall MHD case (Shercliff flow).
To the author’s knowledge this is novel.

2. Problem formulation

Referring to Fig. 1, the momentum equation in a fully developed
MHD flow in a rectangular duct of size �adh 6 X 6 adh and
�bdh 6 Y 6 bdh (where dh is the hydraulic diameter), subject to
an applied X-directed magnetic field B0

x is given by
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The flow of conducting fluid generates an induced magnetic field Bz,
satisfying
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where U is the velocity, m is the kinematic viscosity, l the magnetic
permeability, q the density and r the electrical conductivity of the
fluid.

Non-dimensionalising, by setting

x ¼ X
dh
; y ¼ Y

dh
; z ¼ Z

dh
ð3Þ
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we obtain
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and the Hagen number is defined as
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The no-slip condition requires that u ¼ 0 at the wall. The induced
magnetic field h satisfies
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in the fluid region. For the Shercliff problem considered here, the
induced magnetic field vanishes at the wall. The solution to this
problem is well known, and is given in the appendix for the case.

In the following we consider the energy equation, which in
steady state, fully developed flow, can be written as
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For now, we leave this equation in its dimensional form. The pro-
cess of non-dimensionalisation differs markedly between H1 and
H2 cases and is dealt with at the beginning of Sections 3.1 and 3.2
for the H1 and H2 cases, respectively.

3. Analytical solution

3.1. H1 heat transfer case

The H1 transfer case describes circumstances where the heat
flux is uniform in the axial direction and the wall temperature Tw

is uniform in the peripheral direction. Under the conditions of fully
developed Shercliff flow, it can be assumed that
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where the bulk temperature Tm is defined as
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R
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We non-dimensionalise as before, with the non-dimensional tem-
perature profile t x; yð Þ being defined by

t ¼ T
dTw=dZð Þdh

ð14Þ

Inserting these into Eq. (11) gives
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We now proceed to determine the non-dimensional temperature
profile t x; yð Þ by decomposing the solution into a particular integral
and a general solution. We obtain the following particular integral,
which satisfies (15).

tp x; yð Þ ¼ HgPr
X1
n¼1

f n xð Þ cos kny ð16Þ

where

Nomenclature

C wetted perimeter (m)
l fluid magnetic permeability (Hm�1)
m kinematic viscosity (m2 s�1)
q fluid density (kgm�3)
r fluid electrical conductivity (Sm�1)
A duct cross-sectional area (m2)
a duct half-width (m)
b duct half-height (m)
B0

x applied x-directed magnetic field (Wb m�2)
Bz induced magnetic field (Wb m�2)
dh hydraulic diameter (m)
h dimensionless magnetic field
Ha Hartmann number

Hg Hagen number
Nu Nusselt number
p pressure (Pa)
Pr Prandtl number
q00 heat flux (W m�2)
Re Reynolds number
T temperature profile (K)
t dimensionless temperature
Tm bulk temperature (K)
Tw wall temperature (K)
U velocity profile (ms�1)
u dimensionless velocity
Um mean velocity (ms�1)
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Fig. 1. Duct coordinate system.
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