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a b s t r a c t

Solutions of the integro-differential equation of radiation transfer via numerical methods were well
known to suffer from two ‘‘separate’’ shortcomings: (1) numerical smearing error due to spatial domain
discretization, and (2) ray effect error due to angular discretization. In this study, proportionality expres-
sions for various orders of numerical smearing errors are derived, and the inherent dependence of such
errors on both spatial and angular discretization is found. Ray effect is categorized into two components:
local and propagation errors; and they are not independent of spatial discretization. Using DOM solution,
the individual and combined impacts of the above-mentioned numerical errors together with the
recently discovered angular false scattering error are examined for various spatial and angular discreti-
zations and medium optical properties. The dependence of numerical errors on scattering anisotropy is
investigated. It is found that, for low scattering anisotropy, either numerical smearing or ray effect errors
dominate, depending on optical thickness and scattering albedo. For high scattering anisotropy, however,
the ray effect and angular false scattering dominate.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical methods have become increasingly demanded in the
field of radiation heat transfer [1,2]. Processes requiring complete
and accurate solutions to the equation of radiation transfer (ERT)
include high-temperature combustion and material processing
[3–6], fire and flame radiation [7–9], renewable solar energy [10],
and biomedical therapeutic applications involving the interaction
of biological tissue with light [11–14]. In the presence of radiation
scattering, the ERT is an integro-differential equation, and analytic
solutions are nearly impossible. Thus, to accurately determine
radiation heat transfer contributions, various numerical methods,
such as the discrete-ordinates method (DOM) [15–17] and Finite-
Volume Method (FVM) [18–19] have been developed. Solution of
the ERT using numerical methods involves the discretization of
both the spatial and angular domains, which result in three types
of numerical error: (1) numerical smearing, (2) ray effect, and (3)
angular false scattering.

Numerical smearing is a direct result of spatial discretization
practices [20–22]. Considered a counterpart of artificial numerical
diffusion in computational fluid dynamics, numerical smearing is
significant in multidimensional problems where spatial grid lines
and radiation directions are misaligned [23], although it still per-

sists in 1-D problems. Numerical smearing is dependent on both
spatial grid resolution and chosen spatial differencing scheme.
First-order schemes, such as the step (upwind), are well-known
to be susceptible to large numerical smearing errors [24,25].
Higher-order spatial differencing schemes may be able to reduce
numerical smearing error and increase ERT solution accuracy
[22–27]. A hybrid differencing scheme, developed by Li [28] as a
simple method to treat collimated irradiation, was able to reduce
numerical smearing error in arbitrarily specified discrete direc-
tions. Li and coworkers additionally proposed the double rays
method [29] to reduce numerical smearing error. As numerical
smearing tends to mimic the behavior of scattering by artificially
smoothening the intensity field [24], it is sometimes referred to
as ‘‘false scattering’’ [20–22,25,28].

Ray effect stems from the approximation of the double integral
in total solid angle 4p using a finite number of discrete radiation
directions [30,31]. Lack of appropriate angular resolution can lead
to physically unrealistic bumps and oscillations in the intensity
field [20]. The most common remedy for treatment of ray effect
is to simply increase direction number [31]; however this is com-
putationally expensive [32]. Additional quadrature modification
have been recently developed, including the Modified Discrete
Ordinates Method (MDOM) [33] and the Discrete Ordinates
Scheme with Infinitely Small Weights (DOS + ISW) [34]. Ray effect
exists in any method where angular discretization exists, although
the degree of error magnitude may differ for different solution
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methods [35] and different directional quadrature schemes [36].
Ray effect and numerical smearing have been shown to exhibit
compensatory effects [20,21,23,24] in some situations, such that
reduction of one error may increase another error.

It is well known that DOM angular discretization breaks down
scattered energy conservation for radiation involving anisotropic
scattering [37,38]. To correct it, phase-function normalization via
traditional scattered energy averaging is commonly implemented
[38]. Only recently was it discovered that, in addition to scattered
energy, the overall phase-function asymmetry factor also becomes
non-conserved after directional discretization [39–41]. Non-con-
servation of asymmetry factor after angular discretization results
in alteration of medium scattering properties, which certainly
changes ERT solution. Errors of this type are a third type of numer-
ical error, termed as ‘‘angular false scattering’’ [42–43]. In order to
ensure mitigation of angular false scattering in approximate meth-
ods, such as the DOM and FVM, it is critical that scattered energy
and asymmetry factor are simultaneously conserved after direc-
tional discretization. A new phase-function normalization
approach developed by the current authors [40] is able to achieve
such concurrent conservation, leading to accurate conformity of
both DOM [42,43] and FVM [44] ERT solutions with benchmark
Monte Carlo predictions.

Studies on the magnitudes and impacts of numerical smearing
and ray effect errors are widespread throughout the field. How-
ever, with the recent discovery of angular false scattering errors,
a more thorough investigation on the appearance, magnitude,
and combined effects of all three numerical errors is mandated.
In this study, a detailed investigation into these three errors after
DOM discretization is presented. In particular, the so-called com-
pensatory effect between numerical smearing and ray effect is ana-
lyzed and clarified. Comparisons of DOM heat fluxes with
benchmark Monte Carlo predictions are shown, in order to illus-
trate the appearance of each numerical error. The impact of each
error is analyzed for varying medium optical properties. Addition-
ally, the combined effects of all three errors on radiation transfer
predictions are determined for varying medium properties, in
order to gauge the regimes where numerical errors significantly
impact DOM radiation transfer predictions.

2. Discretizations of ERT

In general vector notation, the steady-state ERT of radiation
intensity I can be expressed as follows, for a gray, absorbing-emit-
ting, and scattering medium [1,2]:

ŝ � rIðr; ŝÞ ¼ �ðra þ rsÞIðr; ŝÞ þ raIbðrÞ

þ rs

4p
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In the above, the spatial gradients of radiation intensity on the left-
hand side are balanced on the right-hand side by three terms: (1)
intensity attenuation due to both absorption and out-scattering,
(2) intensity augmentation due to gray medium emission, and (3)
intensity augmentation due to radiation in-scattering from any
radiation direction ŝ0.

Using the DOM, Eq. (1) can be expanded into a simultaneous set
of partial differential equations in many discrete directions for a
general 3-D enclosure, defined using the Cartesian coordinate sys-
tem, in the following dimensionless form [2]:
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where the optical coordinates sj ¼ ra þ rsð Þj for j = x, y, z, and the
single-scattering albedo x = rs/(ra + rs). Using the DOM, the con-
tinuous angular integral of radiation scattering is replaced by a
sum of M total discrete directions, which are individually defined
by both polar angle hl and azimuthal angle /l. The direction cosines
ll = sinhl cos/l, gl = sinhl sin/l, and nl = coshl correspond to the x-, y-,
and z-coordinate directions, respectively. In said summation, wl0 is
the DOM quadrature weighting factor corresponding to radiation
direction ŝl0 , and Ul0 l is the diffuse scattering phase-function value
between two arbitrary radiation directions ŝl0 and ŝl.

To solve Eq. (2), the spatial domain of interest is discretized into
numerous control-volumes (CVs), and the spatial derivatives are
approximated using control-volume (CV) differencing methods.
After definition of both spatial and angular discretization schemes,
as well as medium properties, the ERT can be solved using an iter-
ative CV marching procedure [2].

2.1. Numerical smearing

Numerical smearing error arises due to spatial discretization of
the computational domain [20,21]. Consider the derivative ll @Il

@sx
,

with computational domain discretized using the CV schematic
in Fig. 1, and three representative discretization schemes to
approximate the derivative: the step (upwind) scheme [2], dia-
mond (central) scheme [2], and QUICK scheme [22,23]:
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Nomenclature

g phase-function asymmetry factor
I radiative intensity (W/m2 sr)
M total number of discrete directions
r position vector
ŝ unit direction vector
w discrete direction weight

Greek symbols
ra, rs absorption, scattering coefficients (m�1)
l, g, n direction cosines
U scattering phase-function
/, h radiation direction azimuthal angle and polar angle (�)

H scattering angle (�)

Subscripts
b blackbody
i control-volume node
N quadrature index

Superscripts
0 radiation incident direction
l, l0 radiation directions
l0, l from direction l0 into direction l
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