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a b s t r a c t

Rocks with shear fractures or faults widely exist in nature such as oil/gas reservoirs, and hot dry rocks,
etc. In this work, the fractal scaling law for length distribution of fractures and the relationship among
the fractal dimension for fracture length distribution, fracture area porosity and the ratio of the maxi-
mum length to the minimum length of fractures are proposed. Then, a fractal model for permeability
for fractured rocks is derived based on the fractal geometry theory and the famous cubic law for laminar
flow in fractures. It is found that the analytical expression for permeability of fractured rocks is a function
of the fractal dimension Df for fracture area, area porosity /, fracture density D, the maximum fracture
length lmax, aperture a, the facture azimuth a and facture dip angle h. Furthermore, a novel analytical
expression for the fracture density is also proposed based on the fractal geometry theory for porous
media. The validity of the fractal model is verified by comparing the model predictions with the available
numerical simulations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fractured media and rocks with shear fractures or faults widely
exist in nature such as oil/gas reservoirs, and hot dry rocks, etc.
Usually, the fractures are embedded in porous matrix with micro
pores, which play negligible effect on the seepage characteristic,
and randomly distributed fractures dominate the seepage charac-
teristic in the media. The randomly distributed fractures are often
connected to form irregular networks, and the seepage character-
istic of the fracture networks has the significant influence on
nuclear waste disposal [1], oil or gas exploitation [2], and geother-
mal energy extraction [3]. In this work, we focus our attention on
the seepage characteristics of fracture networks in fractured rocks
and ignore the seepage performance from micro pores in porous
matrix.

Over the past four decades, many investigators studied the
seepage characteristics of fracture networks/rocks and proposed
several models. Snow [4] developed an analytical method for per-
meability of fracture networks according to parallel plane model.
Kranzz et al. [5] studied the permeability of whole jointed granite
and tested the parallel plane model by experiments. Koudina et al.
[6] investigated the permeability of fracture networks with numer-
ical simulation method in the three-dimensional space, they

assumed that fracture network consists of polygonal shape frac-
tures and fluid flow in each fracture meets the Darcy’s law. Dreuzy
et al. [7] studied the permeability of randomly fractured networks
by numerical and theoretical methods in two dimensions, and they
verified the validity of the model by comparing to naturally frac-
tured networks. Klimczak et al. [8] obtained the permeability of a
single fracture by parallel plate model with the fracture length
and aperture satisfying power-law and verified by the numerical
simulation. However, these models did not provide a quantitative
relationship among the permeability of fracture networks, poros-
ity, fracture density and microstructure parameters of fractures,
such as fracture length, aperture, inclination, orientation etc.

Fractures in rocks are usually random and disorder and they
have been shown to have the statistically self-similar and fractal
characteristic [3,9–13]. Chang and Yortsos [10] studied the single
phase fluid flow in the fractal fracture networks. Watanabe and
Takahashi [3] investigated the permeability of fracture networks
and heat extraction in hot dry rock by using fractal method. But,
they did not propose an expression of permeability with micro-
scopic parameters included. Jafari and Babadagli [14] obtained
the permeability expression with multiple regression analysis of
random fractures by the fractal geometry theory according to
observed data in the well logging. In addition, their expression
with several empirical constants does not include the orientation
factor and microstructure parameters of fracture networks. The
tree-like fractal branching networks were often considered as
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fracture networks by many investigators. Xu et al. [15,16] studied
the seepage and heat transfer characteristics of fractal-like tree
networks. Recently, Wang et al. [17] studied the starting pressure
gradient for Bingham fluid in a special dual porosity medium with
randomly distributed fractal-like tree network embedded in matrix
porous media. Most recently, Zheng and Yu [18] investigated gas
flow characteristics in the dual porosity medium with randomly
distributed fractal-like tree networks. However, the fractal-like
tree network is a kind of ideal and symmetrical network.

The purpose of the present work is to derive an analytical
expression and establish a model for permeability of fracture
rocks/media based on the parallel plane model (cubic law) and frac-
tal geometry theory. The proposed permeability and the predicted
fracture density will be compared with the numerical simulations.

2. Fractal characteristics for fracture networks

Many investigators [3,9–13,19–23] reported that the relation-
ships between the length and the number of fractures exhibit the
power-law, exponential and log-normal types. Torabi and Berg
[19] made a comprehensive review on fault dimensions and their
scaling laws, and they summarized several types of scaling laws
such as the length distributions for faults and fractures in siliciclas-
tic rocks from different scales and tectonic settings. The power-law
exponents of the scaling-law between the fault length and the
number of faults were found to be in the range of 1.02–2.04 and
are probably influenced by factors such as stress regime, linkage
of faults, sampling bias, and size of the dataset. Interested readers
may consult Refs. [3,9–13,19–23] for detail.

In addition, the self-similar fractal structures of fracture net-
works were extensively studied [22,23], and the application in
complex rock structures with the fractal technique was recently
reviewed by Kruhl [24]. Velde et al. [25] and Vignes-Adler et al.
[26] studied the data at several length scales with fractal method
and found that the fracture networks are fractal. Barton and Zoback
[27] analyzed the 2D maps of the trace length of fractures spanning
ten orders, ranging from micro to large scale fractures and found
that Df = 1.3–1.7.

The width between two plates/walls of a fracture, i.e. the paral-
lel plate model is used to represent the effective aperture of a frac-
ture. Generally, the relationship between the effective aperture a
and the fracture length l is given by [28,29]

a ¼ bln ð1Þ

where b and n are the proportionality coefficient and a constant
according to fracture scales, respectively. The value of n = 1 is
important, which indicates a linear scaling law, and the fracture
network is self-similarity and fractal [19,29]. Thus, in the current
work the value of n = 1 is chosen for fractures with fractal
characteristic.

Thus, Eq. (1) can be rewritten as

a ¼ bl ð2Þ

Eq. (2) will be used in this work.
It is well-known that the cumulative size distribution of islands

on the Earth’s surface obeys the fractal scaling law [30]

NðS > sÞ / s�D=2 ð3aÞ
where N is the total number of island of area S greater than s, and D
is the fractal dimension for the size distribution of islands. The
equality in Eq. (3a) can be invoked by using smax to represent the
largest island on Earth to yield [31]

NðS > sÞ ¼ smax

s

� �D=2
ð3bÞ

Eq. (3b) implies that there is only one largest island on the
Earth’s surface, and Majumdar and Bhushan [31] used this

power-law equation to describe the contact spots on engineering
surfaces, where smax ¼ gk2

max (the maximum spot area) and
s ¼ gk2 (a spot area), with k being the diameter of a spot and g
being a geometry factor.

It has been shown that the length distribution of fractures sat-
isfies the fractal scaling law [3,9–13,19,22,23,32], hence, Eq. (3b)
for description of islands on the Earth’s surface and spots on engi-
neering surfaces can be extended to describe the area distribution
of fractures on a fractured surface, i.e.

NðS � sÞ ¼ amax lmax

al

� �Df =2

ð3cÞ

where amaxlmax represents the maximum fracture area with amax

and lmax respectively being the maximum aperture and maximum
fracture length, and al refers to a fracture area with the aperture
and length being a and l, respectively.

Inserting Eq. (2) into Eq. (3c), we obtain

NðS � sÞ ¼ bl2
max

bl2

 !Df =2

ð3dÞ

Then, from Eq. (3d), the cumulative number of fractures whose
length are greater than or equal to l can be expressed by the follow-
ing scaling law:

NðL � lÞ ¼ lmax

l

� �Df

ð4Þ

where Df is the fractal dimension for fracture lengths, 0 < Df < 2 (or
3) in two (or three) dimensions; and Eq. (4) implies that there is
only one fracture with the maximum length. Some investigators
[3,9–13,19,32] reported that the length distribution of fractures in
rocks has the self-similarity and the fractal scaling law can be
described by N / Cl�Df , where C is a fitting constant, Df is the fractal
dimension for the length (l) distribution of fractures and N is the
number of fractures, and this fractal scaling law is similar to Eq.
(4). Eq. (4) is also the base of the box-counting method [33] for mea-
suring the fractal dimension of fracture lengths in fracture net-
works, and Chelidze and Guguen [9] applied the box-counting
method and found that the fractal dimension of fracture network
(described by Nolen-Hoeksema and Gordon [34]) in a 2D cross sec-
tion is 1.6.

Since there usually are numerous fractures in fracture net-
works, Eq. (4) can be considered as a continuous and differentiable
function. So, differentiating Eq. (4) with respect to l, we can get the
number of fractures whose lengths are in the infinitesimal rang l to
l + dl:

�dNðlÞ ¼ Df l
Df
maxl�ðDfþ1Þdl ð5Þ

Eq. (5) indicates that the number of fractures decreases with the
increase of fracture length and �dN(l) > 0.

The relationship among the fractal dimension, porosity and the
ratio kmax=kmin for porous media was derived based on the assump-
tion that pores in porous media are in the form of squares with
self-similarity in sizes in the self similarity range from the mini-
mum size kmin to the maximum size kmax, i.e. [35]

Df ¼ dE þ
ln e

lnðkmax=kminÞ
ð6Þ

where e is the effective porosity of a fractal porous medium, dE is the
Euclid dimension, and dE = 2 and 3 respectively in two and three
dimensions. It has been shown that Eq. (6) is valid not only for
exactly self-similar fractals such as Sierpinski carpet and Sierpinski
gasket but also for statistically self-similar fractal porous media.

Fractures in rocks or in fractured media are analogous to pores
in porous media. Therefore, Eq. (6) can be extended to describe the
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