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a b s t r a c t

The effective conductivity of binary composites may be estimated through a number of analytical,
empirical and numerical methods. These methods must incorporate the relative conductivities, the
volume fractions and morphologies of the constituent materials. The concept of microstructural
efficiency is introduced in this paper as a means of quantifying the effect of morphology on effective
conductivity in a composite. The variation of microstructural efficiency on structured prismatic and three
dimensional morphologies is calculated using a Lattice Monte Carlo method. This information enables
discussion of the advantages and disadvantages of particular morphologies as conductors or insulators
in addition to providing a method for calculating effective conductivity.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Macroscopic properties of composites allow an engineer or
material scientist to make practical decisions on real world applica-
tions. A composite may be composed of several constituents which
are chemically dissimilar and separated by a distinct interface. How
the material properties of the constituents may be homogenised to
an effective macroscopic average depends on the particular prop-
erty. In a thermal study the equilibrium properties of heat capacity
and density can be homogenised simply with a mass and volume
weighted average respectively. Transient thermal properties like
thermal conductivity depend on the morphology of the composite
in addition to the constituent properties. Functionally, in a binary
composite, that is:

�kiso ¼ f k1; r;u1;Morphologyð Þ ð1Þ

where �kiso represents the effective isotropic thermal conductivity of
the homogenised composite, k1 is the isotropic conductivity of the
inclusion phase, r is the isotropic conductivity ratio of the two
constituents (r = k1/k0), u1 describes the volume fraction of the
inclusion phase and the fourth written term refers to the influence
of the composite morphology on the effective thermal conductivity.
The subscripts 1 and 0 refer to the inclusion and matrix phases
respectively. The goal of this paper is to quantify the influence of
morphology for structured morphologies.

Though thermal conductivity is taken as the running example in
this paper, analogies exist in other physical systems. Table 1

describes some analogues between thermal conductivity and other
common engineering situations. These properties are also resolv-
able with the methodology presented in this paper.

Homogenisation of material properties has been an open field of
research for centuries, including contributions from many
renowned scientists such as Maxwell and Lord Rayleigh, who made
significant contributions through the late 19th century [1,2]. A
great number of analytical and empirical methods were developed
through the 20th century, before advances in computational
resources allowed numerical methods to become widely used.
The large body of information available has been summarised
through many excellent review articles e.g. [3–6]. The models
presented below are far from exhaustive, instead providing
well-known work as a point of comparison and example of
microstructural efficiency calculation. Modern correlations
improve upon these models but rarely is the case of structured
morphologies considered [7,8].

The effective conductivity of a composite is known to always
fall within the Wiener bounds [6] given by the volume fraction
weighted series (�kser) and harmonic (�khar averages (Eqs. (2) and
(3) respectively). The upper limit is the highest effective
conductivity possible for a particular composite and is useful for
normalisation purposes. There do in fact exist tighter bounds than
this as described by Hashin and Shtrikman [9] provided statistical
isotropy is attained. However, here we adhere to the upper Wiener
bound (Eq. (2)) as the highest possible conductivity.

�kser ¼ u1k1 þ 1�u1ð Þk0 ð2Þ

�khar ¼
u1

k1
þ 1�u1ð Þ

k0

� ��1

ð3Þ
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The Maxwell–Eucken model (adapted in 1940 by Eucken) is
commonly used to estimate the effective conductivity (�kME) of low
concentrations of disperse spheres in a matrix [10]. The model
assumes the temperature field about each particle does not interact
with those surrounding [11]. Hence it is constrained in validity to
volume fractions for which spheres are separated by distance much
larger than their diameters.

�kME ¼
k1u1 þ k0 1�u1ð Þ 3k1= 2k1 þ k0ð Þ½ �

u1 þ ð1�u1Þ 3k1= 2k1 þ k0ð Þ½ � ð4Þ

The effective mean field theory was first proposed by Bruggeman
in 1935 [12] and considers a macroscopically homogeneous
distribution of spheres. The validity of mean field theory models
break down close to percolation (i.e. long range connectivity) of
an inclusion phase. The effective conductivity (�kBru in this case is
found through implicit solution of the following:

1�u1 ¼
k1 � �kBru
� �

k1 � k0ð Þ
k0

�kBru

� �1=3

ð5Þ

It should be noted that all four models here do not explicitly depend
on the morphology of the medium. Morphological factors may be
taken into account using specific semi-empirical and empirical
models [5,6,13–15]; however these models often have a small range
of validity and require a large number of geometric factors to be
specified.

A simple model that considers a specific morphology is the
Halpin–Tsai theoretical model [5,15]. It is most appropriate for
filaments of uniform cross-sectional area running in parallel
through a matrix. The parallel and lateral components of the
effective conductivity tensor are separately considered. The
parallel component is assumed to be the series volume (or area
in this case) weighted average. The transverse components take
into account the shape of the filament. The effective isotropic
conductivity (�kHT through this model is:

�kHT ¼
2
3

1þ ncu1

1� cu1

� �
þ 1

3
u1k1 þ 1�u1ð Þk0ð Þ ð6Þ

Here the additional coefficients are:

c ¼
k1
k0
� 1

k1
k0
� n

n ¼
ffiffiffi
3
p

log a
b

� �
for a plate of width a and height b

1:0 for square or circular fibres

(

Microstructural efficiency was first introduced by Rawson et al. in
2014 [16] as a means of comparing the preferable microstructure
for composites of immiscible metals. Here it was found that a
Tin–Aluminium composite would be more conductive if it were
composed of non-percolating spheres of Tin. It was also found that
for a Copper–Iron system, the more highly conductive Copper
would benefit from greater percolation. These systems had the
additional constraint that the lower melting temperature constitu-
ent (Tin and Copper respectively) had to be macroscopically encap-
sulated so as to form a phase-change thermal storage material [17].

Microstructural efficiency is a convenient property for quantify-
ing the overall impact of morphology on the effective isotropic
conductivity of a composite. The microstructural efficiency (gl) is
defined as the ratio of the actual (measured or computed) effective
isotropic conductivity (�kiso) to the volume weighted series average
of the constituents. If ui is the volume fraction of the ith
constituent the functional form may be written:

gl ¼
�kisoPn

i¼1uiki
ð7Þ

If the microstructural efficiency were available for a given morphol-
ogy then the effective isotropic conductivity could be easily back
calculated, from:

�kiso ¼ gl
�kser ð8Þ

This paper documents the microstructural efficiency of binary
composites for seven different structured morphologies over a
range of volume fractions and conductivity ratios. Structured
morphologies remove the degree of freedom brought around by
random packing and often have clearly defined percolation volume
fractions. Considering these well studied morphologies facilitates
discussion on more general random morphologies in future work.

To produce microstructural efficiency data the effective isotro-
pic conductivity for the particular morphology, volume fraction
and conductivity ratio must be found. The effective isotropic con-
ductivity may be obtained through a number of means. The analyt-
ical and empirical methods discussed earlier may be used although
these are limited to certain morphologies. For completely general
morphologies, numerical methods can provide a much more flexi-
ble approach.

The Lattice Monte Carlo (LMC) numerical method has been
successfully utilised in the determination of effective isotropic con-
ductivity for a number of morphologies [16,18–21]. The LMC
method involves simulating heat diffusion at steady state through
random walks of particles over a lattice. The lattice describes the
location and relative conductivity of the constituents giving a rep-
resentation of the composite morphology. A repeating volume of
the lattice is simulated with the introduction of periodic bound-
aries. The effective diffusivity is inferred by the Einstein diffusion
equation. The effective diffusivity with unity thermal inertia
(simulated at steady state) is by definition the effective thermal
conductivity [22], thus the following holds:

�kiso ¼
hR2i
2dt

ð9Þ

Here R refers to the displacement of a particle, d is a constant
related to the dimensionality of the simulation and t is the number
of time steps.

As the LMC method must discretise a domain to a (usually
cubic) grid, the number of nodes employed must be high enough
such that the morphology is adequately represented. This valida-
tion step is common in discrete and finite element analyses and
is often referred to as the establishment of mesh independence.
It was found by Rawson et al. that a sphere discretised with more
than ten nodes across its radius in a random hard sphere morphol-
ogy would achieve mesh independence in effective isotropic ther-
mal conductivity [16]. Additionally where the inclusions have a
very small separation or intersection, the grid must be fine enough
to resolve the fine feature. This can be ensured by calculating the
separation or intersection and ensuring the lattice spacing is
smaller.

The LMC method has an inherent statistical uncertainty which
is approximately inversely proportional to the square root of the
number of particles simulated. This uncertainty can be reduced
below an acceptable proportion by simply increasing the particle

Table 1
Similar transient properties involved in engineering situations.

Situation Transient property

Temperature field Thermal conductivity
Electric field Electrical conductivity
concentration field Species diffusivity
Electric field applied on a dielectric Permittivity
Magnetic field Magnetic permeability
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