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a b s t r a c t

A new approach to modeling transient heating in evaporating fuel film was suggested, with energy gov-
erning equations of evaporating fuel film solved analytically. This approach was validated with fine
numerical calculation, and only our approach could give accurate predictions compared with conven-
tional methods in the literature. Limitations of underlying assumptions in conventional methods were
revealed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Wall film simulation has been an issue of much interest for dec-
ades due to its significance in engineering applications. This paper
concerns numerical calculation of wall film heating and evapora-
tion in internal combustion engines. Related studies in the litera-
ture focus on the modeling of evaporation and film heating.

The calculation of fuel film evaporation in engine is usually
based on vapor diffusion, by assuming fuel vapor at film surface
always remains saturated. Actually, the physical process of evapo-
ration generally involves two main phases [1]: (1) detachment of
fuel molecules from the liquid surface into gas in the immediate
vicinity of liquid surface, (2) diffusion of fuel vapor from surface
into the ambient gas. The first phase in evaporation has been
widely studied with kinetic theory and molecular dynamics. How-
ever, these studies have not been applied into industry till now due
to the complexion.

Reliable evaporation modeling requires accurate prediction in
film heating. Hence another key issue is film heating calculation,
which is the central topic of this paper. Three results in film heat-
ing calculation are interesting, surface temperature Ts and temper-
ature gradient @T=@xs, wall temperature gradient @T=@xw. Ts

determines the saturated vapor pressure, given the pressure field;
@T=@xs and @T=@xw determine the film thermal balance. In the

engineering level, these three quantities influence mixture forma-
tion, combustion, emission and thermal load of wall.

Actually, film heating can be conveniently predicted in CFD code
with Eulerian multiphase approach. However, that is not practical
when it comes to the application in engines. In engine in-cylinder
flow, length scale of fuel film at wall is nearly 1=10000 times short
relative to the macro length scale. Consequently it is impossible to
solve film heating equation with finite-volume-like method. There-
fore, film heating has to be modelled.

Till now film heating modeling methods in the literature can be
divided into two groups.

The first group of methods assume thermal mixing is infinitely
rapid in film, so an average temperature is used to replace the tem-
perature distribution. Additionally, the surface temperature is cal-
culated by energy conservation at film surface. Hence the film
temperature distribution is shown as piecewise linear shape, given
wall temperature. This method was firstly used in [2], and then it
was adopted by [3–5]. It is also adopted by commercial CFD codes
due to its simplicity. Actually, as will be seen, the infinitely rapid
mixing assumption can be accepted only when steady state will
be or is reached, and it violates reality in transient state.

In the other group of methods, film temperature profiles are
approximated to polynomial curves. The underlying assumption
is that the real temperature distribution at any time can be fit with
a single family of polynomial curves. Foucart et al. [6] developed
parabolic curves for temperature profiles, and agreement was
shown in the posteriori validation. In [7], a family of three order
polynomial curves was suggested, with a shape factor defined in
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the polynomial coefficients. The posteriori agreement was roughly
acceptable. In [8,9], three order polynomial curves with four inde-
pendent coefficients were developed, and their prediction for Ts

agreed well with fine numerical solutions. Polynomial approxima-
tion method seems to have matured in engine application. Unfor-
tunately, as will be shown in the following sections, polynomial
approximation method cannot give reasonable @T=@xw. @T=@xw

directly controls thermal load of wall components, and it should
be accurately predicted.

In this paper, a new approach to film heating modeling was pre-
sented considering deficiencies of conventional methods. Two con-
ventional assumptions, infinitely rapid mixing and polynomial
approximation, were both abandoned. The new approach was
based on analytical solutions of transient energy conservation
equations, together with time marching algorithm. This approach
was applied to a representative practical engine case, validated
with fine numerical solutions. Its advantages over conventional
methods were shown, with limitations of conventional assump-
tions revealed.

The rest is organized as follows. Section 2 presents the mathe-
matical formulation, followed by Section 3 the application, results
and discussion. Conclusions are drawn in Section 4.

2. Mathematical formulation

Film heating formulation is briefly described in Section 2.1.
Compatible evaporation models are introduced in Section 2.2. Time
marching algorithm is presented in Section 2.3.

2.1. Film heating formulation

First governing equations are given, and then equations are nor-
malized, with variables transformed. Whereafter the derived equa-
tion is solved.

2.1.1. Governing equations
The diffusion in film is supposed to be dominant with the con-

vection term ignored, and the energy flow in film is assumed one
dimensional [5,11]. Multi-component nature of fuel is ignored to
isolate the heating and evaporation, and its modeling can be cou-
pled with in future works. Based on the fundamental assumptions
above, the transient heat transfer equation inside the film can be
written as [11]:

@T
@t
¼ al

@2T
@x2 ð1Þ

where T ¼ Tðx; tÞ is film temperature, t time, x 2 ½0; d0� distance to
the wall, d0 initial film thickness, and al thermal diffusivity. al is
assumed constant for the analytical solution of Eq. (1). Solving
equations with variable coefficients started more than 50 years
ago and is still continuing [1]. In this paper, properties variation is
considered in time marching algorithm, as well as boundary condi-
tion variation be. This will be discussed in Section 2.3.

Assuming that the film is heated by convection above the sur-
face, and cooled down due to evaporation, the energy balance
equation at the film surface can be written as:

hðTg � TsÞ ¼ �qlL _dþ kl
@T
@x

����
x¼d0

ð2Þ

where hðtÞ is convective heat transfer coefficient, which is usually
given by modified wall functions for engines [12]. d is thickness of
film, TgðtÞ ambient gas temperature, ql film density, kl film conduc-
tivity, and LðTÞ specific heat of evaporation. _d < 0 is accounted for
during the evaporation process. Eq. (2) can be considered as the
boundary condition for Eq. (1) at x ¼ d0, complemented by
T ¼ TwðtÞ at x ¼ 0. Initial condition is Tðx;0Þ ¼ T0ðxÞ at t ¼ 0.

Eq. (2) can be rearranged to:

Teff � Ts ¼
kl

h
@T
@x

����
x¼d0

ð3Þ

with Teff ðtÞ ¼ TgðtÞ þ qlL _dðtÞ=hðtÞ. Although non-zero _d due to evap-
oration is considered, d is assumed constant in all terms except in
the definition of Teff . This assumption is acceptable when our solu-
tions are applied in small time steps. Meanwhile, hðtÞ; TgðtÞ, and
TwðtÞ, together with properties, are also assumed constant. The
value of _d is given by evaporation models, which will be discussed
in Section 2.2.

2.1.2. Normalization and variable transformation
The governing equation with boundary and initial conditions

should be normalized to make the Dirichlet boundary condition
homogeneous, besides the aim for simplicity.

Normalized variables are introduced as H ¼ ðT � TwÞ=ðTg � TwÞ
and X ¼ x=d0. Then Eq. (1) can be written as,

@H
@t
¼ j

@2H

@X2 ð4Þ

where j ¼ al=d
2
0. Then boundary conditions become H ¼ 0 at X ¼ 0,

and @H=@X þ HðtÞH ¼ MðtÞ at X ¼ 1, and the initial condition

H0 ¼ H0ðX;0Þ at t ¼ 0, where MðtÞ ¼ ðTeff ðtÞ�TwðtÞÞhðtÞd0

ðTg ðtÞ�TwðtÞÞkl
, and

HðtÞ ¼ hðtÞd0=kl.
In a little time interval of time marching algorithm, we have

HðtÞ ¼ const ¼ H0, and MðtÞ ¼ ðTeff ðtÞ�TwÞhd0

ðTg�TwÞkl
¼ mðtÞ. Then boundary

condition at X ¼ 1 becomes @H=@X þ H0H ¼ mðtÞ.
To make boundary condition at X ¼ 1 homogeneous, the new

variable WðX; tÞ is introduced satisfying the relation
HðX; tÞ ¼ XmðtÞ=ð1þ H0Þ þWðX; tÞ, and then Eq. (4) can be rewrit-
ten as,

@W
@t
¼ j

@2W

@X2 �
X

1þ H0

dmðtÞ
dt

ð5Þ

with homogeneous boundary conditions W ¼ 0 at
X ¼ 0; @W

@X þ H0W ¼ 0 at X ¼ 1, and initial condition,
W0 ¼ H0 � X

1þH0
mð0Þ at t ¼ 0.

2.1.3. Separation of variables
Eq. (5) could be solved using separation of variables,

W ¼
P1

n¼1cnðtÞvnðXÞ;n ¼ 1;2;3; . . .1. Here, vnðXÞ can be derived
from characteristic equation of Eq. (5) with boundary conditions,
and then we will have vnðXÞ ¼ sinðknXÞ, where k meets the condi-
tion k cos kþ H0 sin k ¼ 0.

vnðXÞ;n ¼ 1;2;3; . . .1, form a full set of eigenfunctions which
are orthogonal for X 2 ½0;1�. The orthogonality of function vnðXÞ
follows from relations:

R 1
0 vnðXÞvmðXÞdX ¼ dmnjjvnjj2, where

dmn ¼ 1 if m ¼ n; dmn ¼ 0 if m – n, and jjvnjj2 ¼
R 1

0 vnðXÞvnðXÞdX.
The orthogonality of vnðXÞ allows us to expand unknown

functions in series: H0ðXÞ ¼
P1

n¼1qnvnðXÞ and
X

1þH0
¼
P1

n¼1f nvnðXÞ, where qn ¼ 1
jjvn jj2

R 1
0 H0ðXÞvnðXÞdX and

f n ¼ 1
jjvn jj2

R 1
0

X
1þH0

vnðXÞdX.

Substitute series of H0ðXÞ; X
1þH0

, and WðX; tÞ into Eq. (5), and then
cnðtÞ can be deduced. Then substituting vnðXÞ; cnðtÞ into WnðX; tÞ,
and with the definition of HðX; tÞ, we finally obtain,

Tðx; tÞ ¼ ðTg � TwÞ
x=d0

1þ H0
mðtÞ þ

X1
n¼1

Wnðx=d0; tÞ
( )

þ Tw ð6Þ

Wnðx=d0; tÞ ¼ expð�jk2
ntÞðqn þ f nmð0ÞÞ

�
þf n

Z t

0

dmð0Þ
ds

expð�jk2
nðt � sÞÞds

�
sinðknx=d0Þ ð7Þ
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