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a b s t r a c t

The singular boundary method (SBM) is a relatively new meshless boundary collocation method for the
numerical solution of certain elliptic boundary value problems. The method, based on the notion of the
boundary element method (BEM) and method of fundamental solutions (MFS), fully inherits the merits of
both and in the meantime possessing its unique advantages. Due to the boundary-only discretizations
and its semi-analytical nature, the method can be viewed as an ideal candidate for the solution of inverse
problems. In this study, we document the first attempt to apply the SBM, together with several regular-
ization techniques, for the solution of inverse heat conduction problems in three-dimensional (3D) aniso-
tropic media. Four benchmark numerical examples are well-studied which indicate that the proposed
scheme is accurate, computationally efficient and numerically stable for the solution of 3D inverse prob-
lems with various levels of noisy input data.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The finite element method (FEM) has long been a dominant
numerical technique in the simulation of real-world engineering
applications. However, this method requires the task of meshing
the whole domain which can be arduous, time-consuming and
computationally expensive for certain classes of problems. So the
FEM, despite the generality of its application in engineering prob-
lems, is not free of drawbacks. As an alternative approach, the
boundary element method (BEM) has long been touted to avoid
such shortcomings due to the boundary-only discretizations and
its semi-analytical nature [1]. During the past two decades, the
BEM has rapidly improved, and is nowadays considered as a com-
peting method to the FEM. However, it is well-known that the BEM
cannot be used for problems whose fundamental solution is either
not known or cannot be determined. Such are, for example, prob-
lems described by differential equations with variable coefficients.
The method is also not applicable to non-linear problems for which
the principle of superposition does not hold. In this case, a BEM
model procedures domain integrals that can be computed by dis-
cretizing the domain, but this, of course, spoils the pure boundary
character of the method. In addition, despite the fact that the BEM

requires only meshing on the boundary, surface meshing in a 3D
object with complicated geometry is still a nontrivial task. Thus,
over the past decade, some considerable effort was devoted to cir-
cumventing or greatly eliminating the need for meshing. This led
to the development of meshless or meshfree methods which
require neither domain nor boundary meshing. Some interesting
remarks of the meshless methods and their engineering applica-
tions may be found in the survey papers [2–4].

The singular boundary method (SBM) [5] is a relatively new
method for the numerical solution of boundary/initial value prob-
lems governed by certain partial differential equations. The method
belongs to the family of meshless boundary collocation methods and
involves a coupling between the regularized indirect boundary ele-
ment method (BEM) and the method of fundamental solutions
(MFS) [6–8]. The main idea is to fully inherit the dimensionality
and stability advantages of the former and the meshless and integra-
tion-free attributes of the later. The advantages that the SBM has
over the more classical domain or boundary discretization methods
can be summarized as follows. First of all, it is a boundary-type
method which means that it shares the same advantages of the
BEM has over domain discretization methods. Secondly, it is mesh-
less and does not require the task of domain and/or boundary mesh-
ing which can be arduous, time-consuming and computationally
expensive for problems in complex geometries and higher dimen-
sions. Thirdly, it does not involve costly integrations which could
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be otherwise troublesome as in the case, for example, the BEM-
based methods. Finally, the method sidesteps the perplexing ficti-
tious boundary issue [9–11] associated with the traditional MFS
while inheriting the merits of the latter of being truly meshless,
mathematically simple and easy-to-program. These features make
the method particularly attractive for the solution of problems in
which the boundary is of major importance or requires special atten-
tion. However, as its current stage of development, the SBM also
exhibits several disadvantages, the most important of which are:
(1) similar to the BEM, the SBM cannot be used for problems whose
fundamental solution is not known; and (2) the SBM produces dense
and unsymmetrical coefficient matrix, therefore, the method may be
arduous, time consuming, and computationally expensive for the
solution of large-scale problems. During the past few years, intense
research has been conducted in an effort to overcome the aforemen-
tioned disadvantages.

Prior to this study, the SBM has been successfully tried for 2D
problems in potential theory [12] and linear elasticity [5]. Very
recently, the method has also been extended to solve 3D problems
in potential theory [13]. These problems are known as well-posed
direct problems in which the Dirichlet or Neumann data on the
whole boundary are known. In contrast, in inverse problems, one
or more of the data describing the direct problem is missing, due
to technical difficulties associated with data acquisition. To fully
determine the process, additional data must be supplied, either
other boundary conditions on the same accessible part of boundary
or measurements at some internal points in the domain. A formal
mathematical model of an inverse problem can be derived with
relative ease. However, the process of solving such problems is
extremely difficult and the so-called exact solution practically does
not exist. The inverse problems are also difficult to solve numeri-
cally due to the fact that they are ill-posed in the sense that small
errors in measured data may lead arbitrarily large changes in the
numerical solution [14,15]. Since the measured data are usually
observed only on a part of the boundary, the boundary-type meth-
ods, such as the BEM and MFS, have an edge over domain-type
methods for the numerical solution of such problems. Some inter-
esting surveys of the BEM and MFS on the inverse and ill-posed
problems can be found in Refs. [16–19].

Motivated by the rapidly growing interest in the area, our aim in
this article is to document the first attempt to extend the SBM for the
solution of inverse heat conduction problems in 3D anisotropic
media. Heat conduction in these non-isotropic materials has numer-
ous important applications in various branches of sciences and engi-
neering [20,21]. Since the matrix arising from the SBM discretization
for inverse problems is severely ill-conditioned, a regularized solu-
tion is obtained here by employing some regularization strategies,
namely the truncated singular value decomposition (TSVD) [22]
and Tikhonov regularization technique [23], whilst the optimal reg-
ularization parameter is determined by the L-curve criterion.

A brief outline of the rest of this paper is as follows. Section 2
introduces the mathematical formulation of Cauchy problems in
general 3D anisotropic medium. The SBM formulation and its
numerical implementation are reviewed in Section 3. Followed in
Section 4, the SBM formulations are combined with the aforemen-
tioned regularization techniques to solve the ill-conditioned sys-
tem of algebraic equations. Four benchmark test problems on
general 3D anisotropic media with both smooth and piecewise
smooth geometries are examined in Section 5. Finally, the conclu-
sions and remarks are provided in Section 6.

2. Mathematical formulation for 3D steady-state heat
conduction problems

Consider a 3D anisotropic medium in an open bounded domain
X, and assume that X is bounded by a surface @X ¼ C which may

consist of several components, each being sufficiently smooth in
the sense of Liapunov. We also assume that the boundary consists
of two parts, C ¼ C1 [ C2, where C1;C2 – ; and C1 \ C2 ¼ ;. In this
study, we refer to anisotropic steady heat conduction applications
in the absence of inner heat sources. Hence the function uðxÞ,
which denotes the temperature distribution in X, satisfies the
equation

kij
@2uðxÞ
@xi@xj

¼ 0; x 2 X; ði; j ¼ 1;2;3Þ ð1Þ

subject to the following boundary conditions

uðxÞ ¼ �uðxÞ for x 2 C1; ð2Þ

qðxÞ ¼ @u
@n
ðxÞ ¼ �qðxÞ for x 2 C1; ð3Þ

where ðkijÞi;j¼1;2;3 are the thermal conductivity tensor, which is
assumed to be symmetric and positive-definite so that the partial
differential Eq. (1) is elliptic, n denotes the outward normal, the
overline quantities �uðxÞ and �qðxÞ indicate the given values on the
boundary. The customary standard Einstein notation for summation
over repeated subscripts is employed. In the above formulation of
the boundary conditions (2) and (3), it can be seen that the bound-
ary C1 is over-specified by prescribing both the temperature and the
heat flux, whilst the remaining boundary C2 is under-specified since
both the temperature and the heat flux are unknown and have to be
determined.

From thermodynamic considerations and Onsager’s reciprocity
relation, the conductivity tensor ðkijÞi;j¼1;2;3 must satisfy

k11k33 � k2
13 > 0; k11k22 � k2

12 > 0; k22k33 � k2
23 > 0: ð4Þ

The heat flux vector in an anisotropic potential problem in X is
defined as

hiðxÞ ¼ kiju;jðxÞ ð5Þ

and the normal heat flux through the boundary C is given by

qðxÞ ¼ niðxÞhiðxÞ; ð6Þ

where u;jðxÞ ¼ @uðxÞ
@xj

represents the derivatives of the temperature
uðxÞ with respect to xj, and njðxÞ is the directional cosine of the unit
outward normal vector at the boundary point x.

In the traditional MFS [24], the solution uðxÞ and qðxÞ ¼ @uðxÞ
@nx

can
be approximated by a linear combination of fundamental solutions
with respect to different source points sj as follows

uðxiÞ ¼
XN¼N1þN2

j¼1

ajGðxi; sjÞ; ð7Þ

qðxiÞ ¼ @uðxiÞ
@nxi

¼
XN¼N1þN2

j¼1

aj @Gðxi; sjÞ
@nxi

; ð8Þ

where xi 2 �X ¼ X [ @X is the ith collocation point, sj is the jth
source point, aj denotes the jth unknown coefficient of the distrib-
uted source at sj, the indices N1 and N2 are numbers of the boundary
nodes on C1 and C2, respectively, and

Gðxi; sjÞ ¼ 1
4p

ffiffiffiffiffiffiffiffi
jkijj

p
rðxi; sjÞ

; xi; sj 2 R3 ð9Þ

is the fundamental solutions [25] for 3D anisotropic heat conduc-
tion problems in which jkijj denotes the determinant of kij. Employ-
ing indicial notation for the coordinates of points x and s, i.e.
ðx1; x2; x3Þ and ðs1; s2; s3Þ, respectively, the distance function rðx; sÞ
in the above Eq. (9) can be expressed as

rðx; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tijðxi � siÞðxj � sjÞ

q
; ði; j ¼ 1;2;3Þ; ð10Þ
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