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a b s t r a c t

The onset of convective instability in a layer of porous medium saturated by the Oldroyd-B viscoelastic
nanofluid heated from below is investigated by incorporating the effects of Brownian diffusion and ther-
mophoresis. The flux of volume fraction of nanoparticles is taken to be zero on the boundaries. The result-
ing eigenvalue problem is solved numerically using the Galerkin method. The onset of convective
instability is oscillatory only if the strain retardation parameter is less than the stress relaxation param-
eter and also when the strain retardation parameter does not exceed a threshold value which in turn
depends on other physical parameters. The oscillatory onset is delayed with increasing strain retardation
parameter, while an opposite trend is noticed with increasing stress relaxation parameter. The effect of
increasing modified diffusivity ratio, concentration Darcy–Rayleigh number, modified particle density
increment and Lewis number is to hasten the onset of stationary and oscillatory convection and also
to decrease the ranges of the strain retardation parameter within which oscillatory convection is
preferred.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The term ‘nanofluid’ was first coined by Choi [1] and such a fluid
is envisioned to describe a fluid in which nanometer-sized particles
(10–100 nm) are stably suspended in conventional heat transfer
basic fluids. Materials commonly used for nanoparticles include
oxides such as alumina, silica, titania and copper oxide, and metals
such as copper and gold. Carbon nanotubes and diamond nanopar-
ticles have also been used to realize nanofluids. Popular base fluids
include water, oil and organic fluids such as ethanol, propylene gly-
col and ethylene glycol. Relative to the base fluid, it has been
observed consistently by many researchers that the nanofluids
have abnormal thermal conductivity, viscosity and single-phase
convective heat transfer coefficient. These fluids are considered
to offer important advantages over conventional heat transfer flu-
ids. The recent review articles by Kakac and Pramuanjaroenkij [2],
Yu and Xie [3], Goharshadi et al. [4], Mahbubul et al. [5] have cov-
ered the latest developments in this field in detail.

In recent years, buoyancy driven convection in nanofluids has
attracted researchers and has been a subject of intense current

interest. Tzou [6,7] studied buoyancy driven convection in a hori-
zontal nanofluid layer heated from below on the basis of the trans-
port equations developed by Buongiorno [8], while Kim et al. [9]
treated the Bénard problem for nanofluids in a different context.
Its counterpart in a porous medium, the Darcy–Bénard problem
with nanofluids, has also attracted equal importance in the litera-
ture because of its importance in many fields of modern science,
engineering and technology, chemical and nuclear industries and
bio-mechanics. Such an instability problem was first considered
by Nield and Kuznetsov [10]. Following this formalism several
studies were undertaken subsequently to investigate various addi-
tional effects on the problem by the same authors and others. The
details can be found in the monograph of Nield and Bejan [11]. In
studying these convective instability problems, the volume frac-
tion of nanoparticles was prescribed at the boundaries. Recently,
Nield and Kuznetsov [12] pointed out that this type of boundary
condition on volume fraction of nanoparticles is physically not
realistic as it is difficult to control the nanoparticle volume fraction
on the boundaries, and suggested an alternative boundary condi-
tion that is, the flux of volume fraction of nanoparticles is zero
on the boundaries.

Studies have also revealed that nanofluids containing SiO2
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demonstrate a non-Newtonian behavior at low temperatures
(Namburu et al. [13]). Besides, Chen et al. [14–16] and Schmidt
et al. [17] also indicated the non-Newtonian rheological behavior
of nanofluids. Thus, it is imperative to consider non-Newtonian
effects in the study of convection in nanofluids. There exist differ-
ent kinds of non-Newtonian fluids and they do not lend themselves
to a unified treatment. Many of the base fluids exhibit viscoelastic
behavior and hence considering viscoelastic model is more appro-
priate than an inelastic type of non-Newtonian model in the study
of thermal convective instability in nanofluids. In general, visco-
elastic instability is observed in polymer melts as well as in poly-
mer solutions, which usually consist of a Newtonian solvent and
a polymeric solute. These solutions are often highly elastic but
have an essentially constant viscosity. They are known as Boger
fluids and are reasonably well represented by the Oldroyd-B con-
stitutive model (Bird et al. [18], Li and Khayat [19]). The Old-
royd-B constitutive model is adopted widely to examine the
influence of elasticity on thermal convective instability. This is
because the Oldroyd-B model represents adequately highly elastic
(Boger) fluids, for which the viscosity remains sensibly constant
over a wide range of shear rates. Besides, it is one of the simplest
viscoelastic laws that account for normal stress effects which are
responsible for the periodic phenomena arising in viscoelastic flu-
ids. More importantly, almost all experimental measurements and
flow visualization reported on the instability of viscoelastic flows
have been conducted on Boger fluids. Comparison between theory
and experiment becomes possible when the Oldroyd-B constitu-
tive equation is used. Of course, there exist more realistic phenom-
enological or molecular-theory-based models (Bird et al. [18];
Tanner [20]) but they probably lead to a different stability picture
(Larson [21]).

Copious literature is available on thermal convection in a layer
of porous medium saturated by a viscoelastic regular fluid. Alis-
haev and Mirzadjanzade [22] were the first to deal with visco-
elastic flows in porous media for calculations of delay

phenomenon in filtration theory. Rudraiah et al. [23] studied
thermal convection in a viscoelastic-fluid-saturated porous layer.
A comprehensive review on non-Newtonian fluid flows and heat
transfer in porous media is given by Shenoy [24]. Kim et al.
[25] investigated thermal instability in a porous layer saturated
with viscoelastic fluid and it is found that the overstability is a
preferred mode of instability for a certain range of elastic param-
eters. Malashetty et al. [26] and Shivakumara et al. [27] analyzed
the effects of local thermal non-equilibrium on the onset of con-
vection in a viscoelastic-fluid-saturated porous layer. Zhang et al.
[28] performed linear and nonlinear thermal stability analyses of
a horizontal layer of an Oldroyd-B fluid in a porous medium
heated from below. The details can be found in the book by Nield
and Bejan [11].

Nonetheless, the study of thermal convective instability in a vis-
coelastic nanofluid saturated porous layer is comparatively of
recent origin and it is still in a rudimentary stage. Sheu [29] studied
the onset of convection in a horizontal layer of porous medium sat-
urated with a viscoelastic nanofluid while Yadav et al. [30]
extended this study to include the effect of rotation and variations
in thermal conductivity and viscosity. In the latter paper a weakly
nonlinear stability analysis has also been carried out. To make ana-
lytical progress, the volume fraction of nanoparticles is prescribed
at the boundaries in the above studies. But it is believed that these
conditions are difficult to visualize in practice. Under the circum-
stances, it is desirable to probe the implications of physically real-
istic boundary conditions as far as the volume fraction of
nanoparticles is concerned.

The intent of the present paper is to study the onset of thermal
convective instability in an Oldroyd-B type of viscoelastic nano-
fluid-saturated porous layer considering the flux of volume frac-
tion of nanoparticles is zero at the boundaries as it is physically
more realistic (Nield and Kuznetsov [12]). The resulting eigenvalue
problem is solved numerically using the Galerkin method and the
results are presented graphically.

Nomenclature

a wave number
DB Brownian diffusion coefficient
DT thermophoretic diffusion coefficient
d depth of the porous layer
k thermal conductivity of the nanofluid
K permeability of the porous medium
Le Lewis number
l; m wave numbers in the x- and y-directions
M heat capacity ratio
NA modified diffusivity ratio
NB modified particle density increment
p pressure
~q ¼ ðu;v;wÞ nanofluid velocity
Rm basic density Darcy–Rayleigh number
Rt thermal Darcy–Rayleigh number
Rn nanoparticle concentration Darcy–Rayleigh number
ðx; y; zÞ Cartesian coordinates
t time
T nanofluid temperature
T0 temperature at the lower boundary
T1 temperature at the upper boundary
W amplitude of perturbed vertical component of velocity

Greek symbols
b the coefficient of thermal expansion

e porosity of porous media
g thermal expansion coefficient of viscosity
j thermal diffusivity of the fluid
k1 constant relaxation time
k2 constant retardation time
K1 stress relaxation parameter
K2 strain retardation parameter
l viscosity of the fluid
x growth rate
/ nanoparticle volume fraction
/0 Reference value of nanoparticle volume fraction
U amplitude of perturbed nanoparticle volume fraction
q nanofluid density
H amplitude of perturbed temperature

Superscripts
� dimensionless variable
0 perturbed variable

Subscripts
b basic state
f fluid
p particle
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