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a b s t r a c t

In this article, we have investigated the instability of the liquid–vapour front in a geothermal system with
isothermal boundaries. A two–dimensional linear stability analysis of the isothermal basic state shows
that the Rayleigh–Taylor mechanism is the dominant contributor to instability. A conditional expression
for the critical modified Rayleigh number for different heat transport processes has been found. It has
been shown that the spontaneous transition to instability is an artefact of neglecting thermal advection
and the imposition of the phase change front to be equidistant from the liquid and vapour boundaries.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In 1883 Lord Rayleigh described for the first time the instability
of a dense fluid overlying a lower density fluid in a gravitational
field, which is known as the Rayleigh–Taylor instability [1]. The
transitions to instability at fluid–fluid interfaces are of great inter-
est on account of their wide range of applications. These instabili-
ties can often occur at a liquid–vapour interface in a geothermal
system [2–10]. There is much need for the better understanding
of the different physical phenomena involved with liquid–vapour
phase changes, and this is the focus of our study.

The term ‘‘spontaneous’’ transition in continuum mechanics
refers to a special case of instability; when all wave numbers
become unstable at the same value of the controlling parameter.
The ‘‘spontaneous’’ transition of Il’ichev and Tsypkin [11,12] is
shown to be a very unusual case, depending not only on the front
position but also on the neglect of advective heat transport. Tsyp-
kin and Il’ichev [11,12] investigated different cases of transition to
instability of a stationary vertical phase change flow under the
condition that conduction dominates over advection. It was shown
that if the interface is equidistant from the liquid and vapour
boundaries then there is a spontaneous transition to instability.
A spontaneous transition to instability is a very unusual

phenomenon and so it is worth investigating more thoroughly
the conditions under which it can occur. In particular, (i) is it an
artefact of the relationship assumed by Tsypkin and Il’ichev [11]
between the phase-change temperature and the pressure, or does
it occur in other models; and (ii) is it crucial that advective heat
transport is neglected?

Tsypkin and Il’ichev [7] using typical values for physical quan-
tities, deduce that advection may be neglected if

KjdP � qwgLj � 10�10N; ð1Þ

where K is permeability, dP is the pressure difference across the
layer, L is the characteristic length scale, g is gravity and qw is the
density of water. If we assume that j dP � qwgL j is of the same order
of magnitude as qwgL (i.e., that the applied pressure difference is
roughly comparable in magnitude to the hydrostatic pressure
across the layer) then (1) simplifies to

KqwgL� 10�10N; ð2Þ

or, using qw ¼ 1000 kg m�3 and g � 10 m s�2, then (2) yields

KL� 10�14m3:

Thus for a sandstone with K = 10�10 m2, advection can be neglected
only if L� 10�4 m, i.e., for any large-scale aquifer advection is
important. For a granitic rock with K ¼ 10�16 m2, advection can be
neglected only if L� 102 m, so it may be negligible under these
conditions.
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In the present study, the basic vertical flow is without the
phase motion through the interface. We employ a simpler rela-
tion of temperature and pressure at the liquid–vapour interface
ðT ¼ TSðPÞÞ by assuming a constant temperature and a continu-
ous pressure at the front and a more complete heat transport
equation. Both the pressure and the temperature profiles for
the base flow are linearly distributed. The important aspect of
this analysis is that we will consider a more realistic perturbed
state accounting for thermal advection. The Il’ichev and Tsypkin
[7,11] analysis will be studied as a special case. We will show
that the transition to instability is not spontaneous as found
by Il’ichev and Tsypkin [7,11], indicating that the interesting
behaviour in their model is an artefact of taking a very simple
model which neglected thermal advection.

2. Mathematical model

We consider a uniform, isotropic and fully fluid saturated por-
ous layer of infinite extension bounded by two horizontal, much
more permeable layers. The upper and lower highly permeable lay-
ers are filled either with vapour and liquid, respectively or liquid
and vapour, respectively (see Fig. 1). In the low-permeability layer
there exists a phase change front which separates the liquid phase
from the vapour phase.

2.1. Governing equations

The continuity equation for incompressible flow in dimension-
less form is
@u�liq;vap

@x�
þ
@v�liq;vap

@y�
¼ 0: ð3Þ

Darcy’s equation is taken to hold in each phase and are presented in
scaled form as
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In the equations above, R3 is the modified Rayleigh number which
has been defined as

R3 ¼
K q2

liq cpliq g L

lliq km;liq
;

where K is the permeability of the homogeneous medium and g is
the acceleration due to gravity with x�-co-ordinate increasing
downwards. The modified Rayleigh number R3 will be our key
quantity for understanding the Rayleigh–Taylor instability in a
geothermal system.

We will use the one-equation model to describe the heat trans-
port in the porous medium assuming local thermal equilibrium. In
dimensionless form, the equations in the liquid and vapour regions
become
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It can be seen from the above equations that the energy transport is
coupled with the mass transport, which introduces non-linearities.
But this is not the only reason for the inherited non-linearities. The
other reason is the coupling of the interface position with the heat
and mass transport equation.

The most important aspect of phase change problems is the
energy and mass balance at the interface of the two phases, which

Nomenclature

Latin
cp specific heat
g acceleration due to gravity
H reciprocal of Stefan number
K permeability
k thermal conductivity
L thickness of the low permeable layer
l wave number
P pressure
q heat flux per unit area
S location parameter of the interface
T temperature
t time
x vertical coordinate
y horizontal coordinate

Greek symbols
� perturbation parameter
j thermal conductivities ratio
k latent heat
l dynamic viscosity
m kinematic viscosity
q density
r spectral parameter
r� asymptotic spectral parameter
H dimensionless temperature
t fluid flow velocity
u porosity

Dimensionless quantities
C specific heat ratio
E heat capacity ratio
R kinematic viscosity ratio
R1 density ratio
R2 dynamic viscosity ratio
R3 modified Rayleigh number

Subscripts
L liquid boundary
liq liquid phase
m porous medium
ref reference quantity
S at the phase transition front
s porous skeleton
V vapour boundary
vap vapour phase
0 base state
1 perturbed state

Superscripts
mini minimum
⁄ dimensionless quantity
0 base state
1 perturbed state
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