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a b s t r a c t

This work presents an analytical attempt to illustrate the effect of axial diffusion on concentration disper-
sion in packed tube flows. The concentration moment method is applied to derive the analytical solution
for time-dependent Taylor dispersion coefficient. With the increase in the packing parameter a as a
damping factor, the concentration dispersion is characterized by three modes: (I) the shear-induced dis-
persion dominated mode, with dispersion coefficient determined by a; (II) the transition mode; and (III)
the diffusion dominated mode, with dispersion coefficient determined by Péclet number Pe. In contrast to
the usually negligible effects of axial diffusion for dispersion in pure fluid flows even at a relatively small
Pe, axial diffusion with typical a plays an important role for packed media flows even with large Pe.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Concentration transport in packed media flows is of fundamen-
tal importance for its essential implications in various industrial
and environmental processes, such as chromatography, biochemi-
cal separation or purification of mixtures, enhanced oil recovery,
wastewater treatment engineering, and environmental risk assess-
ment [1–11].

Among related studies on concentration transport in tube flows,
Taylor’s dispersion analysis provided a fundamental physical
insight in characterizing the transverse mean concentration. Taylor
dispersion [12] refers to concentration transport in tube flows
under the effects of flow shear and molecular diffusion, which
together contribute to a one-dimensional diffusion-like process.
Usually the contribution of the flow shear effects dominates the
process, and the effective diffusion coefficient, or Taylor dispersion
coefficient, can be several orders of magnitude larger than the
molecular diffusivity [1,13]. This predominant feature has
attracted intensive studies and founded extensive applications
[1,4,14–19].

Taylor dispersion in packed tube flows has been studied analyt-
ically [20,21]. Taylor’s classical analysis and the homogenization
technique were respectively applied for the dispersion coefficients.

However, these techniques belong to the asymptotic analysis and
the analytical expressions obtained are only valid for dispersion
at large times. In contrast, the concentration moment method first
by Aris [22] is frequently adopted in the study of Taylor dispersion
for its ability in capturing the temporal variation of the dispersion
coefficient during the initial stage of the concentration transport,
even when the flow is steady. Since the moment equations can
be solved exactly, concentration moments at different orders con-
tain accurate information on the evolution of the concentration
cloud statistically. For example, the zeroth order moment reveals
the conservation of the released mass; the first order moment
reveals the effective displacement of the concentration cloud; the
second order moment reveals the property associated with the dis-
persion of the concentration cloud. By obtaining the first three
aforementioned moments, the transverse mean moments more
exactly, it is capable of describing the concentration transport pro-
cess with the aid of the Taylor dispersion model.

In Taylor’s original study [12], the axial diffusion was neglected
since the main focus of his analysis is on the notable enhancement
of the solute dispersion by the flow distribution non-uniformity. A
great deal of explorations by different methods extended Taylor’s
results to involve the axial diffusion effects in the dispersion coef-
ficient [1,14,21–25], while at the same time indicated a quadratic
Pe dependence for the enhancement of the dispersion, where the
Péclet number Pe is a dimensionless parameter revealing the rela-
tive importance of the convection and diffusion, usually with large
values for natural and industrial processes [1,26]. As a result the
axial diffusion effects generally appear as an independent term in
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the analytical solutions for the dispersion coefficient, and are often
neglected in related studies that followed.

Though a great deal of research has been undertaken on disper-
sion in packed media flows [7–9,20,21,27], there is no analytical
study systematically addressed the effects of axial diffusion. Actu-
ally for the packed media, the dispersion process is much more
complicated than that in pure fluid tube flows [21]. The axial diffu-
sion can become important due to the packing of the media and in
the transient initial stage of concentration transport. It is the flow
details that strongly affect the concentration dispersion processes:
the packed media in the tube reduce the transverse flow velocity
non-uniformity, resulting in the decrease of the enhancement of
the dispersion (or the shear-induced dispersion). That’s the possi-
ble reason for axial diffusion playing an important role. On the
other hand, the dispersion coefficient is numerically smaller at
the transient initial stage of the transport while the effects of axial
diffusion are not dependent on time, which also contributes to a
more important contribution of axial diffusion to the dispersion
process.

By the general formulation for concentration transport in
packed media flows based on the phase average, Taylor dispersion
and the effects of axial diffusion are analytically studied and dis-
cussed for packed tube flows in this paper. In Section 2, the analyt-
ical solution for Taylor dispersion coefficient is obtained by
concentration moment method; and in Section 3, typical values
of the packing parameter a as a damping factor are estimated,
and three modes of the concentration dispersion as well as the
transient initial stage on the effects of axial diffusion are discussed
in detail.

2. Taylor dispersion in a packed tube flow

2.1. Formulation for concentration transport

The effects of diffusion and the transverse non-uniformity of
longitudinal fluid flow velocity together contributes to the concen-
tration transport. After an instantaneous release of concentration
over the cross-section of a tube with pure fluid flow, the temporal
evolution of the concentration cloud can generally be divided into
two stages. The first stage can be called the transient initial stage of
the transport, during which the transverse mean concentration
shows a skewed longitudinal distribution. After a time scale char-
acterized by R2=D�, where R is the tube radius and D� is the molec-
ular diffusivity, the mean concentration tends to a Gaussian
distribution. At the latter stage, the centroid of the concentration
cloud moves at the mean velocity of the flow, and the mean con-
centration disperses in the longitudinal direction by a virtual diffu-
sion coefficient called Taylor dispersion coefficient [21,23,28].

For the more complicated case of a packed media flow, the basic
equation for superficial concentration transport can be adopted
generally at the phase average scale as [29]

/
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þr � ðUCÞ ¼ r � ðjk/rCÞ þ jr � ðK � rCÞ; ð1Þ

where U is velocity [m s�1], t time [s], / porosity [dimensionless], j
tortuosity [dimensionless] to account for the spatial structure of
packed media, C concentration [kg m�3], k concentration diffusivity
[m2 s�1], and K concentration dispersivity tensor [m2 s�1]. As diffu-
sivity for concentration transport valid for the description of the
single phase flow at the microscopic passage scale, concentration
dispersivity is the property valid for the description of the effective
flow at the phase average scale. By the operation of phase average,
the discontinuity between the two phases of the ambient water and
the solid packed material is smeared out. The equation is a combi-

nation of an advection–diffusion equation and a concentration dis-
persion law.

For the present case of a tube flow, Eq. (1) becomes
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Consider a uniform and instantaneous release of scalar substance
with mass Q at the cross-section of x ¼ 0 at time t ¼ 0, the initial
condition can be set as

Cðx; r; tÞjt¼0 ¼
QdðxÞ
/pR2 ; ð3Þ

where dðxÞ is the Dirac delta function. The non-penetration condi-
tion at the tube wall of r ¼ R reads as
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Since the amount of released substance is finite, we have upstream
and downstream boundary conditions as

Cðx; r; tÞjx¼�1 ¼ 0: ð5Þ

With dimensionless parameters of

s ¼ t
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where um is the transverse mean velocity, the governing equation
and its initial and boundary conditions for the concentration trans-
port can be rewritten as
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Xðn; f; sÞjs¼0 ¼ dðPeRnÞ; ð8Þ
@Xðn; f; sÞ
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Xðn; f; sÞjn¼�1 ¼ 0; ð10Þ

where

w0 ¼ u
um
� 1 ð11Þ

and

Pe ¼ Rum

jð/kþ KÞ ð12Þ

is the Péclet number for concentration transport in packed tube
flows.

2.2. Concentration moment method and analytical solution for
dispersion coefficient

The pth order concentration moment is defined as

mpðf; sÞ ¼
Z þ1

�1
npXðn; f; sÞdn: ð13Þ

Characteristic of an exponential decay in space, distribution of
the concentration is subjected to the auxiliary relations [22,23] as

npXðn; f; sÞjn¼�1 ¼
@Xðn; f; sÞ

@n
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pXðn; f; sÞ
@np

����
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¼ 0

ðp ¼ 1;2 . . .Þ: ð14Þ

Multiplying Eqs. (7)–(9) by np and integrating them with respect
to n in the interval of ð�1;1Þwith the aid of Eqs. (10) and (14), we
have
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