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a b s t r a c t

A consistent asymptotic theory describing hydrodynamic and thermal turbulent boundary layers on a flat
plate in zero pressure gradient is developed. The fact that the flow depends on a limited number of gov-
erning parameters allows us to formulate algebraic closure conditions that relate the turbulent shear
stress and turbulent heat flux to mean velocity and temperature gradients. As a result of an exact asymp-
totic solution of the boundary-layer equations, the known laws of the wall for the velocity and temper-
ature and the velocity and temperature defect laws as well as the expressions for the skin-friction
coefficient, Stanton number, and Reynolds-analogy factor are obtained. The latter implies two new for-
mulations for the temperature defect law one of which is completely similar to the velocity defect law
and does not contain the Stanton number and the turbulent Prandtl number, and the other does not con-
tain the skin-friction coefficient. A heat-transfer law is obtained that relates only thermal quantities. The
theoretical conclusions agree well with experimental data.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The well-known temperature defect law, valid in the outer
region of the turbulent boundary layer, see e.g. [1], uses as a
characteristic scale the so-called friction temperature, which is
calculated from the skin-friction coefficient and Stanton number
for which measurements of both wall shear stress and heat flux
are needed. The same applies to the universal heat-transfer law
[1], which relates three quantities: the Stanton number, the skin-
friction coefficient, and a Reynolds number. For the turbulent
boundary layer on a flat plate, such measurements, as far as we
know, were performed in a single work [2].

In deriving the similarity laws [1], there are used only dimen-
sional analysis and a single physical assumption [3], according to
which the flow under consideration has two characteristic length
scales: the viscous one (that determines the thickness of the viscous
near-wall sublayer) and the outer one (boundary-layer thickness).
At high Reynolds numbers, molecular viscosity and heat conductiv-
ity are not essential outside the viscous sublayer (and are not
among the governing parameters for the flow outside the viscous
sublayer) while the outer scale exerts no influence on the processes
near the wall and is not a governing parameter in this region.

The present paper suggests a different approach to the classical
problem under consideration, which is based on solving the

momentum and heat-transfer equations, closure conditions for
which are formulated (under the same physical assumption [3])
in terms of functional dependencies of the turbulent shear stress
and turbulent heat flux upon velocity and temperature gradients.
The existence of these functional relations is a consequence of
the fact that the considered turbulent flow in whole depends only
on a limited number of governing parameters. The idea of such a
closure method was first formulated in Ref. [4] and then used in
subsequent works, see e.g. Refs. [5–8].

Another essential element of the investigation is a special
change of variables in the boundary-layer equations [9], which
allows us to seek the solution to the problem in the form of asymp-
totic expansions in high values of the logarithm of the Reynolds
number based on the boundary-layer thickness. As a result, along
with the known similarity laws for the outer and wall regions of
the boundary layer, the expression for the Reynolds-analogy factor
is obtained which implies two new formulations of the tempera-
ture defect law. The first one is completely similar to the velocity
defect law, i.e. contains neither the Stanton number nor the
turbulent Prandtl number and the second one uses only thermal
quantities, i.e. does not contain the skin-friction coefficient. A
heat-transfer law is obtained that relates only thermal quantities.
These relations can already be compared with a wider set of exper-
imental data. Thus, we use the work [10], in which the temperature
profiles and skin friction are measured but there is no data on heat
flux, and the paper [11], which reports Stanton numbers but
contains no values of skin-friction coefficients.
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Thus, the purpose of the present work is to obtain similarity
laws resting upon first principles without invoking any special
hypotheses and approximate turbulent models. As it is well
known, there is a great deal of literature devoted to the latter ones,
and among this literature one can mention some of the latest
works [12–14].

2. Problem formulation and closure conditions

We consider the flow of incompressible fluid in a turbulent
boundary layer on a flat, smooth plate. The free stream has a veloc-
ity ue and a temperature Te. The plate temperature Tw is constant.
The origin of a Cartesian coordinate system is at the leading edge of
the plate.

2.1. Governing equations

The flow is described by the Navier–Stokes, continuity, and
heat-transfer equations
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For low-speed, incompressible flow, the kinetic heating associated
with the viscous dissipation of energy is negligibly small and is
not taken into account in Eq. (2).

The system of turbulent boundary-layer equations is obtained
after averaging of Eqs. (1) and (2) and neglecting of a number of
relatively small terms
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2.2. Closure conditions

For incompressible flow, the hydrodynamic problem (1) is inde-
pendent of the thermal one (2) and all hydrodynamic quantities,
among them mean-velocity gradient and turbulent shear stress,
are functions of the Cartesian coordinates x and y and three gov-
erning parameters—the density q, the kinematic viscosity m, and
the free-stream velocity ue:
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¼ F1ðx; y;q; m;ueÞ; ð4Þ

u0v 0 ¼ F2ðx; y;q; m;ueÞ: ð5Þ

Let us consider a boundary-layer thickness

D ¼ F3ðx;q; m;ueÞ ð6Þ

as a quantity characterizing the transverse length scale of the tur-
bulent flow. For example, as it is usually accepted in practice, we
may consider the boundary-layer thickness as the distance from
the wall d99 at which the streamwise mean-velocity component dif-
fers from ue by 1%. Solving Eqs. (4) and (6) for quantities x and ue

and substituting them into Eq. (5), we obtain
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After applying to this relation the P-theorem, we have
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Here, S is a universal function and Re is the local Reynolds number
based on the mean-velocity gradient and the distance from the wall.

Temperature field is calculated on the basis of velocity field,
therefore governing parameters for the thermal problem are
q; m;ue, the temperature-conductivity coefficient v, and the tem-
perature difference Tw � Te:
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¼ F5ðx; y;q; m;v;ue; Tw � TeÞ; ð8Þ

T 0v 0 ¼ F6ðx; y;q; m;v;ue; Tw � TeÞ: ð9Þ

The transverse temperature gradient and turbulent temperature
flux depend on the difference of the temperatures on the wall and
in the free stream due to linearity of Eq. (2). Solving Eqs. (4), (6),
and (8) for the quantities x;ue, and Tw � Te and substituting them
into Eq. (9), we obtain
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Since, as mentioned before, we neglect the kinetic heating, the
equation for temperature (2) is homogeneous. Therefore, one may
choose for temperature an arbitrary dimension. Taking this into
account, after applying the P-theorem, we get
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Here, H is a universal function and Pe is the local Péclet number
based on the mean-velocity gradient and the distance from the wall.
The Reynolds and Péclet numbers are related by the equation
Pe ¼ PrRe, where Pr ¼ m=v is the molecular Prandtl number.

Two characteristic flow regions—the viscous sublayer and the
outer region of the boundary layer—are described in terms of the
variables Re, Pe, and g as follows. In the viscous sublayer,
Re ¼ Oð1Þ and Pe ¼ Oð1Þ while the distance from the wall normal-
ized with the boundary-layer thickness g! 0. In the outer region
of the boundary layer, 1=g ¼ Oð1Þ while the local Reynolds and
Péclet numbers Re and Pe tends to infinity as m! 0 and v! 0.
The functions S and H can be considered as continuous and differ-
entiable functions of their arguments. We impose weaker
conditions

SðRe;gÞ ¼ SðRe;0Þ þ Oðga1 Þ; g! 0; Re ¼ Oð1Þ;
SðRe;0Þ ¼ Sð1;0Þ þ OðRe�a2 Þ; Re!1;
SðRe;gÞ ¼ Sð1;gÞ þ OðRe�a2 Þ; Re!1; 1=g ¼ Oð1Þ;
Sð1;gÞ ¼ Sð1;0Þ þ Oðga1 Þ; g! 0; a1;a2 > 0; ð12Þ

and similar conditions for the function HðRe;PrRe;gÞ. The conditions
(12) are a mathematical formulation of the main physical assump-
tion [3,1], according to which the flow under consideration has only
two characteristic length scales: viscous one (which determines the
viscous-sublayer thickness) and outer one (the boundary-layer
thickness). At high Reynolds numbers, molecular viscosity and
heat-conductivity are not essential outside the viscous sublayer
while the outer scale exerts no influence on flow in the wall region.

3. Wall region

Integration of the momentum and energy Eq. (3) across the
layer in view of the continuity equation and closure conditions
(7) and (11) yields
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