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A time domain boundary integral equation method, which is named as quasi-initial condition method, is
applied in this paper to solve the transient heat conduction problem. In conventional implementations,
however, this method suffers from a numerically unstable problem when the time step is small. To
improve the numerical stability of the method, a time step amplification method is proposed. In the pro-
posed method, an amplified time step is adopted to compute the temperature and the flux at the virtual
time point. The boundary condition at that virtual time point is determined through a linear interpolation
by the conditions at the current time step point and the quasi-initial time. Furthermore, the heat gener-
ation in the virtual time step is assumed to be constant which is the same as that in the real time step. The
temperature and the flux at the current step time point are then computed through a linear interpolation
over the time interval. A short but not rigorous deduction of this method is presented to show that this
method is valid in solution to problems in which the temperature and the flux vary linearly respect to

time. Numerical examples further demonstrate the numerical stability of the proposed method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The transient heat conduction problem widely appears in engi-
neering problems. Many numerical methods have been proposed
to solve this problem such as the finite difference method (FDM)
[1,2], the finite volume method (FVM) [3,4], the finite element
method (FEM) [5,6] and the boundary element method (BEM)
[7-17]. Among these methods, the BEM seems to be more attrac-
tive for its dimension reduction feature. For transient heat conduc-
tion problem, BEM may be classified into two catalogs: the
transformed domain method [7-9] and the time domain method
[10-17]. The transformed method usually leads to an accurate
result. In that method, however, it is very difficult to determine
the transformation parameters which play a great important role
in the numerical scheme. Moreover, for many practical problems,
a large number of sampling frequencies is often required to obtain
accurate solutions. Hence the numerical inverse transformation is
usually very time-consuming and the accelerated techniques
should be employed [7,8].

In this paper, we concern the time domain method. There are
two different implementations of time domain methods. One
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employs the time-independent fundamental solution and the other
one employs the time-domain fundamental solution. In the case of
time-independent fundamental solution, the derivatives with
respect to temporal variable are treated through a time domain
difference scheme. In that implementation, domain integrals of
the temperature are involved and the computational scale is
related to the number of domain nodes. Thus, it lost the advantages
of dimension reduction in the BIE method.

The numerical method employing the time-domain fundamen-
tal solution was first used by Thaler et al. in [10]. In Brebbia’s work
[11], this type of method is further classified into two schemes.
One is named by convolution quadrature method (CQM) and the
other one is the quasi-initial condition method. In the CQM,
temperature and flux at each step are computed through a convo-
lution of temperature and flux on the boundary at previous steps. If
the initial temperature and the heat generation are omitted, the
CQM leads to a pure boundary method. As indicated in [12-16],
however, the CQM suffers from the time-consuming convolution
especially in the case that a long time history is concerned. Many
methods were proposed to accelerate the computation of the con-
volution. Gupta et al. applied an expanded fundamental solution to
reduce the calculation of boundary integrals that appear in the
time convolution [13]. Considering the decay of the time domain
fundamental solution, Banerjee et al. developed an efficient time
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domain convolution method in which the number of integral
points was determined adaptively [14]. By combining with the
boundary face method [18-22], Zhou et al. applied the efficient
time domain convolution method to analyze structures with
open-ended tubular holes [15]. If the initial temperature or the
heat generation is not negligible, however, two methods lost their
dimension reduction advances.

In this paper, we will implement the quasi-initial condition
method to solve transient heat conduction problem. In this
method, the temperature which is computed in the previous step
is treated as the initial temperature in current step. Thus, the
domain integral of this initial temperature is involved in the BIE.
Compared with the CQM, however, time consuming convolution
is avoided in this method. Furthermore, in our implementation,
the scale of corresponding systems which should be solved is just
related to the number of boundary nodes and is independent of the
number of domain nodes.

As pointed out in [23-25], the quasi-initial condition method
becomes numerically unstable for small time step. Iso and Onishi
discussed the unstable problem in [23]. Sharp studied the unstable
problem in 1D case through matrix analysis [24]. Peirce et al. stud-
ied this problem through a Fourier transformation tool [25]. In the
above works, authors tried to find the pre-condition to judge if the
computation was stable. In many engineering applications, small
time step should be considered.

In this paper, a time step amplification method is developed to
improve the numerical stability. In this method, the time step is
first amplified into a larger time step. Temperatures and fluxes at
the virtual time step point are then computed. Temperatures and
fluxes at the actual time step point are finally computed by apply-
ing a linear interpolation scheme in the time interval. In the com-
putation of temperatures and fluxes at the virtual time step point,
the corresponding boundary condition is interpolated by the
boundary condition of actual time step point and that of the initial
time point. We will prove theoretically that the temperatures and
fluxes obtained by the proposed method satisfy both the governing
equation and the boundary condition. Since the time step which is
involved in the systems is the amplified one, the proposed method
can improve the numerical stability of the solution.

Three numerical examples are presented to verify the stability
of the proposed method. It is worth noting that in the last example,
a practical engineering problem is considered. Comparison with
the available finite element software is made, showing the ability
of the proposed method in practical application.

2. The time domain boundary integral equation for transient
heat conduction

This section introduces the time domain boundary integral
equation for the transient heat conduction. We start from the gov-
erning equation of heat conduction problem in isotropic media:
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where the domain Q is enclosed by I' = I'; U I',, as shown in Fig. 1,
material properties k, p, c stand for conductivity, density and spe-
cific heat, respectively. u, g denote the temperature and heat flux. Q
denotes the heat generation inside the domain. u, g is prescribed
temperature and heat flux on the boundary. n stands for the out-
ward normal on the boundary. t, is the initial time. It should be

Fn\ I,

n

Fig. 1. Boundary conditions of heat conduction problem.

noted that the material which we concern in this paper is
homogeneous.

The problem can be converted into an equivalent BIE which is
described as the following formulation [11]:
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In this formula, y and x respectively stand for the field point and
source point. And
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in which 6 is the solid angle of the boundary at collocation point y
and 6 = © when the boundary near y is smooth. u*(y,x;1,t) and
q*(y,x; T, t)are the fundamental solutions which can be respectively
written as
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Since the variations of temperature and heat flux with respect
to both spatial variables and temporal variables are usually
unknown, discretization both on space and time is required. We
use a boundary face method, which is detailed in [18-22], to dis-
cretize the boundary of the considered domain. To compute the
temperature and the flux step by step, a piece-wise linear Lagrange
interpolation scheme together with a time-stepping scheme,
which is named by quasi-initial condition scheme, are adopted.

q*(yax; Tv t) = 7k (5)

3. Quasi-initial condition scheme for boundary integral
equation

In the quasi-initial condition scheme, the temperature com-
puted in the front step is considered as the initial condition in
the current step. In each step, we first computed the temperature
and flux on the boundary, and then we calculate the temperature
on internal nodes. The time interval from 0 to 7 can be divided into
M increments of duration At. With the quasi-initial condition
scheme, Eq. (2) has a time discretized form in the mth step:



Download English Version:

https://daneshyari.com/en/article/656960

Download Persian Version:

https://daneshyari.com/article/656960

Daneshyari.com


https://daneshyari.com/en/article/656960
https://daneshyari.com/article/656960
https://daneshyari.com/

