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a b s t r a c t

The aim of the present study is to characterize the unknown thermal conductivity of nonlinear function-
ally graded materials (FGMs) with the method of fundamental solutions (MFS) in conjunction with the
Nelder–Mead simplex (NMS) method. The thermal conductivity is assumed to be a function varying
exponentially with position and linearly/exponentially with temperature with the unknown coefficients.
The determination of the thermal conductivity of FGMs is mathematically complicated due to its multi-
parameter property, inherent nonlinearity and ill-posedness. The MFS, a well-known meshless colloca-
tion method, is used to deal with the two dimensional heat conduction problems. In the meantime,
the NMS method is employed to search for an optimal solution by minimizing a functional measuring
the difference between observed and the MFS-predicted temperatures under estimated parameters.
Numerical examples show the feasibility, robustness and applicability of the proposed scheme.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

During the past decades, the investigation of functionally
graded/gradient materials (FGMs) has been an active area of
research. FGMs, originally proposed by Japanese researchers
[1,2], are a new brand of composite materials. The volume fraction
of the FGMs constituents varies gradually, providing a non-uniform
microstructure with continuously graded macro-properties such as
the thermal conductivity, elastic modulus and density. Thanks to
their superior thermomechanical property, these novel materials
have been extensively applied to a large number of structures, such
as nuclear reactors [3], pressure vessels and pipes [4] and chemical
plants [5].

The determination of the thermal conductivity for the FGMs
encounters huge challenges due to its multi-parameter property,
inherent nonlinearity and ill-posedness [6,7]. It is, therefore,
essential to propose some effective numerical algorithms to solve
this problem. A second-order finite difference procedure by Yueng
and Lam [8] was presented for the inverse determination of the
thermal conductivity in the one-dimensional heat conduction
domain. Dowding, Beck and Blackwell [9] employed the finite
element method to estimate the thermal parameters of a
carbon–carbon composite material characterized by an orthotropic
thermal conductivity. An inverse boundary element method

combined with genetic algorithm [7] was developed to character-
ize the thermal conductivity of heterogeneous materials, where a
bicubic polynomial was selected for the thermal conductivity var-
iation. Mierzwiczak and Kołodziej [6] determined the temperature-
dependent thermal conductivity in steady-state heat conduction
problems for homogeneous materials. In their work, the thermal
conductivity was expressed by a second order Taylor series
approximation with respect to temperature, and its coefficients
were determined by the method of fundamental solution (MFS).

This paper further characterizes the thermal conductivity ten-
sor of nonlinear orthotropic FGMs with the MFS in conjunction
with the Nelder–Mead simplex (NMS) method. The thermal con-
ductivity of the nonlinear FGMs is assumed to be a function of
the spatial coordinate and temperature with unspecified parame-
ters [10], which varies exponentially with position and linearly/
exponentially with temperature. The temperature field in a general
orthotropic FGM is predicted via the MFS, and the optimal thermal
conductivity is searched by the NMS method. The identification
of the thermal conductivity is achieved merely based on the
measured boundary temperature and heat flux.

The MFS, firstly proposed by Kupradze and Aleksidze in 1964
[11,12], is a simple and efficient boundary-only meshless colloca-
tion method. The solution of a problem is approximated by a linear
combination of the fundamental solution of the governing
equation by the MFS. The MFS is attractive to researchers
because it is integration-free, easy to implement and converges
rapidly [13,14]. The application of the MFS widely exists in heat
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conduction problems, including Cauchy problems [15,16], the
identification of heat sources [17,18], identification of the
boundary heat flux [19,20], determination of the thermal conduc-
tivity [6,21] and transient three dimensional heat conduction in
FGM [22]. A comprehensive review on the application of the MFS
in inverse problems can be found in Ref. [23] and references
therein. In the meantime, the NMS method is employed to search
for an optimal solution by minimizing a regularized functional
measuring the difference between observed and the MFS-predicted
temperatures under estimated parameters. The NMS method has
been used extensively to estimate parameter [24,25] since its
inception by Nelder and Mead [26].

The rest of this paper is organized as follows. The MFS in con-
junction with the NMS method is formulated for the determination
of the thermal conductivity in Section 2. Section 3 examines the
efficiency, accuracy and robustness of the proposed approach
through four benchmark examples. Finally some concluding
remarks are summarized in Section 4.

2. Thermal characterization of the orthotropic FGMs

2.1. Nonlinear steady-state heat conduction problems

Consider a two-dimensional steady-state heat conduction
problem in a nonlinear orthotropic inhomogeneous media [10]
without internal heat generation:

ðeK ijðx; TÞTðxÞ;jÞ;i ¼ 0 8x ¼ x1; x2 2 X ð1Þ

subjected to following boundary conditions:
Essential boundary conditions (prescribed temperature)

TðxÞ ¼ f on CT ; ð2Þ

Natural boundary conditions (prescribed heat flux)

qðxÞ ¼ �eK ijT ;jni ¼ g on Cq; ð3Þ

where eK ¼ feK ijðx; TÞg16i;j62 denotes the thermal conductivity in
terms of spatial variable x and temperature T, and is a diagonal
and positive-definite matrix. T(x) is temperature at point x and
q(x) represents its heat flux. ni is the ith-direction cosine of the unit
outward normal vector to the boundary C = CT [ Cq. f and g are
specified continuously differentiable functions on the related
boundaries, respectively. For convenience, the spatial derivatives
are indicated by a comma, such as T,i = oT/oxi. Moreover, repeated
subscript indices stand for summation convention.

In this study, the thermal conductivity is assumed as

eK ðx;TÞ¼aðTÞK expð2b �xÞ; aðTÞ¼1þlT or aðTÞ¼elT ; x2X ð4Þ

where l is the parameter for the temperature-dependent term, the
vector b = (b1, b2) is a graded parameter vector and the matrix K is a
diagonal and positive-definite matrix with constant entries.

Before solving problem (1)–(3), we reduce the problem to a lin-
ear one through the Kirchhoff transformation [27]

/ðTÞ ¼
Z

aðTÞdT: ð5Þ

Then Eqs. (1)–(3) are recast as

KijUT;ijðxÞ þ 2biKijUT;jðxÞ ¼ 0; x 2 X; ð6Þ

UTðxÞ ¼ /ðTÞ; x 2 CT ; ð7Þ

uðxÞ ¼ �ðKijUT;jniÞ � expð2bT � xÞ ¼ �q; x 2 Cq; ð8Þ

where UT(x) = /(T(x)) and the inverse Kirchhoff transformation for
temperature is

TðxÞ ¼ /�1ðUTðxÞÞ: ð9Þ

It should be noted that the inverse of UT(x) in Eq. (9) can be
referred to Ref. [28].

2.2. Formulation for the inverse problems with the MFS

Since it is more convenient to obtain the measurement data on
the boundary, it is natural to apply a boundary-type technique to
solve the aforementioned problem. The MFS, a boundary only
meshless method, is employed in this study. In the MFS, the
solution is approximated by a linear combination of fundamental
solutions with the unknown coefficients {ai}, namely,

UTðxÞ ¼
XN

i¼1

aiTFðx; yiÞ; ð10Þ

where TF(x,yi) is the fundamental solution of Eq. (6). Referred to
Berger et al. [29], the fundamental solution is

TFðx; yÞ ¼ �
K0ðjRÞ
2p

ffiffiffiffiffiffiffiffi
DK
p exp �bT � ðxþ yÞ

� �
; ð11Þ

where x ¼ ðx1; x2Þ is a field point, and y ¼ ðy1; y2Þ a source point,

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b � K � bT

q
, R the geodesic distance defined as R ¼ Rðx; yÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r � K�1 � rT
p

, r ¼ x� y. K0 denotes the zero-order modified Bessel
function of the second kind and DK ¼ detðKÞ ¼ K11K22 � K2

12 > 0.
The source points y are either pre-assigned or taken to be part of
the unknowns of the problem along with the coefficients faigN

i¼1.
In either case, the unknowns are determined when the approxima-
tion (10) satisfies the boundary conditions (7) and (8). For
simplicity, the locations of the source points are pre-assigned and
taken to be a curve similar to the real boundary hereafter. The
number of source points is equal to that of collocation points.

Then the heat flux can be derived as

uðxÞ ¼ �
XN

i¼1

aiQ Fðx; yiÞ; ð12Þ

where

QFðx; yÞ ¼ ðKijTFðx; yÞ;jniÞ � expð2bT � xÞ: ð13Þ

Thus the following algebraic equations can be obtained to
determine the unknown coefficients faigN

i¼1 with imposing the
boundary conditions

A¼
TFðxi� ;yj;

eK k
ijÞ

Q Fðxi# ;yj;
eK k

ijÞ

2664
3775ðajÞ¼

/ð�Tðxi� ÞÞ
�qðxi# Þ

0B@
1CA¼b;

i� ¼1;2; � � � ;N1

i#¼1;2; � � � ;N�N1

j¼1;2; � � � ;N
:

8><>:
ð14Þ

With the coefficients vector and inverse Kirchhoff transforma-
tion Eq. (9), the temperature solution T(x) of Eqs. (1)–(3) is
achieved.

In the thermal characterization of the orthotropic FGMs, the
parameters in the thermal conductivity eK ijðx; TÞ are unknown
and K12 = K21 = 0. In addition, data from temperature measure-
ments on Cq and heat flux on CT are available and denoted by
Y1(x⁄) and Y2(x⁄), respectively. The goal of the inverse problem is
to adjust the conductivity to obtain a best fit through the observed
data by minimizing the objective function:

JðKÞ¼ JðeK ijðx�;Tðx�ÞÞÞ¼ kTðx�Þ�Y1ðx�Þk2
Cq
þkqðx�Þ�Y2ðx�Þk2

CT
; ð15Þ

where T(x⁄) and q(x⁄) are the estimated temperature and heat flux
which are determined by the MFS with a given thermal conductiv-
ity eK k

ijðx�; Tðx�ÞÞ, eK k
ijðx�; Tðx�ÞÞ denotes the estimated quantities at
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