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a b s t r a c t

In order to improve computational efficiency of meshless methods based on Galerkin weak form, a fast
and efficient method based on the proper orthogonal decomposition (POD) technique for transient heat
conduction problems is proposed in the paper. At the first stage of the proposed method numerical sim-
ulation results or experiment data are collected as snapshots, then singular value decomposition (SVD) is
applied to obtain the optimal POD basis, subsequently POD in conjunction with meshless method is used
to generate the reduced model. The efficient and accuracy of the provided algorithm are examined by
three examples, and the numerical examples illustrate that the meshless methods coupled with POD
technique not only keeps computational accuracy, but also brings significant computational time saving
for solving transient heat conduction problems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Transient heat transfer is an important phenomenon that occurs
in many engineering problems. However, the complex material
properties, boundary conditions and geometrical shapes make
the analysis of heat conduction problems difficult except for a
few simplified cases. Thus, numerical simulation is an important
ways in the study of transient heat transfer. Many numerical meth-
ods such as the finite element method (FEM), the finite difference
method (FDM), and the finite volume method (FVM) have been
well established over the past few decades and have been success-
fully applied to transient heat conduction problems [1]. However,
if the object has a complex shape, much time is required in prepro-
cessing for these methods, and in performing task such as mesh
generation is time and labor-consuming. In recent years, meshless
methods have emerged and been used successfully in computa-
tional mechanics and heat transfer problems. In these methods,
the approximation is built only based on nodes and no predefined
nodal connectivity is required, then, the removal and addition of
nodes in the domain are easily performed. So far, several meshless
methods have been proposed in literatures, such as smoothed
particle hydrodynamics (SPH) [2], element free Galerkin (EFG)
method [3,4], meshless local Petrov Galerkin (MLPG) method [5],
reproducing kernel particle method (RKPM) [2], radial point

interpolation method (RPIM) [6] and so on. The more details of
these meshless methods can refer to [7–9].

Different meshless methods have been used for the analysis of
transient heat transfer problems and a brief review is presented
in the following. Singh and coworkers [10] analyzed transient non-
linear heat transfer problems in solids by EFG method. Yang and
Gao [11] used radial integration BEM for transient heat conduction
problems. Li and his colleagues [12] proposed the MLPG method in
conjunction with the modified precise time step integration
method for the analysis of transient heat conduction problems.
Based on the moving Kriging interpolation, Chen and Liew [13]
developed meshless local Petrov–Galerkin approach to solve tran-
sient heat conduction problems in 2-D and 3-D spaces. Shibahara
and Atluri [14] applied MLPG to transient heat conduction
involving in a moving heat source. Khosravifard et al. [15] pre-
sented an improved meshless RPIM for nonlinear transient heat
conduction problems and implemented the method to analyze
the functionally graded materials with non-homogenous and tem-
perature-dependent heat sources. Zhang and coworkers [16]
advised to use the mass lumping in EFG method for transient heat
conduction problems. More applications of meshless methods for
heat conduction problems can refer to [17].

Although meshless methods have a lot of advantages over FEM,
they also have some disadvantages. Taking EFG method as an
example, which is one of the popular meshless methods, the imple-
mentation of essential boundary condition is complicated and the
computational time is more than that of FEM. Especially it has high
computational cost for transient problems as compared to FEM,
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which limits its application seriously. Consequently, any contribu-
tion to reduce the computational cost of meshless method can be
regarded as an important progress [15].The main reasons that
cause low computational efficiency of EFG are shown as follows:
(i) There have a lot of matrices inverse and multiplication opera-
tion for computing shape function. (ii) It requires higher order
Gaussian integral to ensure the computational accuracy. (iii) In
every background cell for each Gauss point, it needs to be decided
for which nodes the Gauss point contribute, that is, node search
procedure is involved in. (iv) It needs special and complex method
to impose essential boundary conditions. (v) The bandwidth of sys-
tem-equations matrix which obtained by EFG is usually larger than
that of FEM.

To avoid these deficiencies, in the paper we will present a very
simple technique to simplify the imposition of essential boundary
conditions, and introduce the proper orthogonal decomposition
(POD) technique to generate the reduced model. POD is a powerful
technique for low-order approximation of some high dimensional
processes, which is also known as principal component analysis
(PCA), Karhunen–Loeve Decomposition (KLD) or singular value
Decomposition (SVD). Several contributions on equivalence and
connection among these three methods can refer to [18,19].

Using the POD technique, a small sample of system response
vectors known as snapshots are generated, commonly from exper-
imental data or calculating data of high-dimensional systems, then
some information is extracted from the snapshot set in the form of
basis, and the approximation is obtained through the projection of
a full scale discretized model onto the subspace spanned by the
basis that yields low dimensional reduced models [20]. In this
way, computational cost can be greatly reduced.

The literature on the application of POD is vast, and the paper
makes no attempt to give a complete review of the relevant refer-
ences. A detailed overview of POD can refer to [18,21]. Though POD
widely used in the computation of statics, fluid dynamics, struc-
tural dynamics, etc., it is mainly applied to perform the principal
component analysis and search the main behavior of a dynamic
system [22]. In the past few decades, the POD technique has been
used in the numerical solution to construct some reduced models.
So far the POD technique has been used in the finite difference
method [22], the finite element method [23,24], and the finite

volume method [25] and so on. However, to the best of our
knowledge, there are no published results when POD is used to
reduce the classical EFG method for transient heat conduction
problems. Therefore, in the paper we apply the POD technique to
study the EFG method for solving transient heat conduction prob-
lems and establish a reduced EFG formulation with lower dimen-
sions and high enough accuracy for transient heat conduction
problems.

The article is organized as follows. In Section 2, the funda-
mental principle of the EFG method is briefly reviewed, in
which we extend the nodal influence domain of the EFG method
to arbitrary convex polygon. In Section 3, the implementation of
the EFG method for heat conduction problems in heterogeneous
media is expressed. In Section 4, a brief introduction to POD is
provided, meanwhile, we use POD in conjunction with EFG to
construct a reduced model. In Section 5, numerical examples
are presented to demonstrate the computational accuracy and
efficiency of our method. In Section 6 the article ends with con-
cluding remarks.

2. Element free Galerkin method

2.1. Moving least square approximation

In the solving domain X, according to moving least square
(MLS) theory, the approximate function of uðxÞ can be expressed
as follows[4,6]:

uhðxÞ ¼ PTðxÞA�1ðxÞBðxÞu ¼ NTðxÞu ð1Þ

where PðxÞ is a vector of basis functions that consist of complete
polynomial, NðxÞ is a MLS shape function, u is an unknown vector.
AðxÞ and BðxÞ are matrices defined as follows:

AðxÞ ¼
Xn

i¼1

wiðxÞPðxiÞPTðxjÞ ð2Þ

BðxÞ ¼ ½w1ðxÞPðx1Þ;w2ðxÞPðx2Þ; . . . ;wnðxÞPðxnÞ� ð3Þ

In Eqs. (2) and (3), n is the number of weight function
wiðxÞ ¼ wðx� xiÞ > 0.

Nomenclature

P(x) complete polynomial basis
a(x) vector of unknowns
A(x) matrix of computation
B(x) matrix of computation
N(x) shape functions
wi (x) weight function
uh(x) the moving least squares approximation function
ky thermal conductivity for y direction
n outward surface normal
T0 initial temperature
Tb prescribed temperature on Dirichlet boundary
Dt time step
K heat conductance matrix
m dimension of the system equations
Tsnap matrix of snapshots
V orthogonal matrix
k eigenvalue
I unit square matrix
K̂ reduced system matrix
k number of optimal POD basis

n number of neighbor points
a the dimensionless size of the influence domain
q the distance between two adjacent nodes
dij Kronecker delta function
T temperature
G heat source
kx thermal conductivity for x direction
q normal heat flux
cp material specific heat
Cb Dirichlet boundary
Cq Neumann boundary
M heat capacitance matrix
F load vector
d number of the snapshots
U orthogonal matrix
u orthogonal eigenvector
U optimal POD basis matrix
M̂ reduced system matrix
F̂ reduced load vector
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