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a b s t r a c t

In this paper a benchmark solution for the conjugate heat transfer of backward-facing step flow is com-
puted using the stream function vorticity formulation. The numerical solution is obtained using the mul-
tidomain Boundary Element Method. A significant difference was found when comparing the results with
the prior benchmark solution computed by Kanna and Das (2006). Similar disagreement has also been
reported in the work done by Teruel and Fogliato (2013). The new benchmark temperature and Nusselt
number values were obtained using Richardson extrapolation to zero-sized mesh. The presented results
have excellent agreement when compared to the third numerical code.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The backward-facing step (BFS) problem is one of the more
important benchmark problems used within computational fluid
dynamics (CFD). BFS research started with the well-known exper-
imental and numerical work of Armaly et al. [3]. This paper serves
as a CFD validation case for many articles, for example Gartling [4]
and Erturk [5] more recently. It is natural to expect that BFS geom-
etry is also used as a heat transfer benchmark. Soon after Gartlings
work two non-isothermal and non-conjugate benchmarks were
published by Dyne and Heinrich [6] and Choudhury [7]. The first
BFS conjugate heat transfer benchmark case was set up by Kanna
and Das [1], as reported in their work.

The mentioned benchmark of Kanna and Das [1] was used
within the validation process of our Boundary Element Method
(BEM) for CFD. Unfortunately significant disagreement was found
during this comparison. The disagreement was confirmed by using
ANSYS CFX as a third CFD code. After detailed literature searching,
another article from conference proceedings written by Teurel and
Fogliato [2] was discovered with practically the same results as
ours. In the work published recently by Seddiq et al. [8], this
benchmark case is used for validation of the lattice Boltzmann
method for model heat transfer at the solid–fluid interface. They
found good agreement when comparing the Nusselt number at
the fluid–solid interface. Unfortunately only one comparison was

shown. However, these two articles confirmed that this benchmark
case is still under investigation and that the confusion is still pres-
ent. The motivation of this paper was to clarify the benchmark
results.

There are many new research fields confirming that the BFS
geometry and heat transfer is still actual and that this benchmark
could be used within the code validation process. In the work of
Kherbeet et al. [9], for example, BFS geometry is used in the nano-
fluid studies. Within the field of MHD flow there are novel works
by Pekmen and Sezgin [10] and Yazdani and Yagoobi [11]. There
are also numerical simulations of both fields; MHD and nanofluid,
as published in the work of Sheikholeslami et al. [12]. These are
only a few recent works dated in 2014. There are also many varia-
tions of BFS geometry used regarding heat transfer problems. BFS
geometry with baffles was used in the work of [13]. Next, the nat-
ural convection within the BFS geometry variation was dealt with
in [14]. The effect of the rotating cylinder on the forced heat con-
vection of ferrofluid over BFS is shown in [15]. These mentioned
articles are only a few among many dated in the year 2014.

The papers structure is as follows. After the Introduction, the
Problem definition is stated in Section 2. In Section 3 the numerical
method is presented briefly. Next, the numerical code validation is
performed using an analytical solution for the conjugate heat
transfer in Section 4. The aim of Section 5 is to present the accuracy
of new benchmark numerical solution using a mesh independency
study. The results are compared to other authors in Section 6. The
paper finishes with the conclusions.
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2. Problem definition

The geometry and the boundary conditions for the conjugate
BFS problem are identical to the referenced work of Kanna and
Das [1], and shown in Fig. 1. The hydrodynamic boundary condi-
tions considered there and here are identical with those of Gartling
[4]. The step height h is exactly defined as half of the channel
height H. The Reynolds number is defined using the channel height
H ¼ 1 and average inlet velocity �u ¼ 1.

The heat transfer boundary conditions are defined by the fluid
inlet temperature 0 and solid bottom wall constant temperature
1. All other walls are adiabatic where the zero temperature deriv-
ative in normal direction is prescribed, see Fig. 1. In the outlet the
adiabatic condition is set as well. In the reference work of Kanna
and Das [1] many cases were computed using 4 parameter study:
Reynolds number (Re), Prandtl (Pr) number, solid slab height (b)
and solid fluid conductivity ratio (k). In order to reduce the number
of cases, only k is varied in the presented article, while other prob-
lem parameters are fixed to the next values: Re ¼ 800; Pr ¼ 0:71
and b ¼ 4h.

The governing equations for an incompressible laminar flow are
written using the stream function vorticity formulation, the same
as in [1,4]. The equations are written in transient non-dimensional
forms exactly the same as in the mentioned referenced work of [1]
using the same notation.

Stream function equation w

r2w ¼ �x: ð1Þ

Vorticity equation x

@x
@t
þ @ðvxxÞ

@x
þ @ðvyxÞ

@y
¼ 1

Re
r2x; ð2Þ

where vx is the velocity in x direction computed as vx ¼ @w=@y and
vy as vy ¼ �@w=@x.

Energy equation within the fluid region

@hf

@t
þ @ðvxhf Þ

@x
þ @ðvyhf Þ

@y
¼ 1

RePr
r2hf ; ð3Þ

where hf is the non-dimensional temperature and Pr the Prandtl
number.

Energy equation within the solid region

@hs

@t
¼ as

af

� �
1

RePr
r2hs; ð4Þ

where as and af are diffusivities for the solid and fluid regions
respectively. The explanation for the non-dimensional form of Eq.
(4) follows. The second term has non-dimensional diffusivity con-
taining Re and Pr. The dimensional form of the solid energy equa-

tion is @TH

@tH ¼ asr2TH. Since the time step is common for all

equations, time is non-dimensionalised by t ¼ tHvx
H which leads to

@h
@t ¼ asHvxr2hs and finally the non-dimensional diffusivity within
the solid region as as

Hvx
¼ as

af

1
RePr. In this Benchmark problem only

the steady state solution is considered. The left hand side of Eq.
(4) is zero and this equation is reduced to the Laplace equation

Nomenclature

b thickness of the solid slab [m]
dx; dy mesh size of uniform mesh along ðx; yÞ axes [m]
h step height [m]
H channel height [m]
kf ;s thermal conductivity of the fluid and solid [W/m K]
k thermal conductivity ratio, ks=kf
nj unit normal direction to the boundary element
Nu local Nusselt number
Nu average Nusselt number
Pr Prandtl number
Re Reynolds number for the fluid
t non-dimensional time
T temperature
u arbitrary field function used in general transport equa-

tion
uH fundamental solution used in BEM integral equation
vx; vy non-dimensional velocity components along ðx; yÞ axes

x; y non-dimensional Cartesian co-ordinates

Greek symbols
af ;s diffusivity of the fluid and solid [m2/s]
C boundary of solution domain used in BEM integral

equation
h dimensionless temperature
w dimensionless stream function
x dimensionless vorticity
X solution domain used in BEM integral equation

Subscripts
⁄ dimensional quantity
f fluid
s solid
w wall, interface between fluid and solid

Fig. 1. Geometry and boundary conditions for conjugate backward-facing step problem.
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