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a b s t r a c t

In this paper, we develop a thermo-mechanical model for flows in superposed porous and fluid layers
with interphasial heat and mass exchange. This model is based on a mixture-theoretic formalism, accord-
ing to which, the fluid and the solid phases are treated as two coexisting but open thermodynamic con-
tinua that interact with each other. As such, each phase is endowed with its own set of thermodynamic
variables and conservation laws. In particular, each phase is assigned with its own temperature field,
thereby allowing for thermal non-equilibrium between the two phases. Constitutive equations for all dis-
sipative and relaxation phenomena occurring in both phases are derived by exploiting the constraints
imposed by the entropy axiom when applied to the entire mixture. This model is valid for both compress-
ible and incompressible flows. Herein we also derive its low-Mach number approximation, which is sub-
stantially simpler and, therefore, more convenient for flows where compressibility effects are negligible.
The efficacy of the proposed model and the effect of thermal non-equilibrium between the two phases are
examined via direct numerical simulations of natural convection in a horizontal channel consisting of a
porous layer and a superposed pure-fluid domain.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the present paper we are concerned with the modeling and
simulation of flows in superposed porous and fluid layers with heat
transfer and interphasial mass exchange. Such flows are encoun-
tered in numerous technological and geophysical applications
and have attracted particular attention over the years. The major
challenges in the study of such flows is the presence of macro-
scopic interfaces between the porous and pure-fluid regions and
the coexistence of fluid and solid phases in the porous regions.

Most often, the presence of interfaces is treated via the two-do-
main approach, according to which separate governing equations
are prescribed on the porous medium and on the pure-fluid
domain. This approach requires the prescription of matching con-
ditions that express continuity of mass and energy fluxes, and bal-
ance of forces at the interface. Typically, governing equations for
the porous regions are derived via volume averaging methods.
This method essentially amounts to modifying the equations of
fluid motion to account for the presence of the solid matrix and
then averaging these equations over space. The literature on the
modeling of porous media flows following the two-domain

approach and on volume-averaging methods is quite extensive;
see, for example, [1–11] and references therein. A wealth of infor-
mation and numerous additional references can also be found in
the textbooks [12,13].

An alternative option, less frequently used, is the single-domain
approach; see, for example [13–20]. This amounts to deriving, via
volume-averaging or a mixture-theoretic formalism, a single set
of governing equations that is simultaneously valid in both the
porous and the pure-fluid domains, thus eliminating the need for
matching conditions at the interface.

Typically, in the two-domain approach, the interface is repre-
sented as a sharp discontinuity so that the flow structures in its
vicinity are not resolved. A notable exception is the transition
region model of [21], in which the interface is modeled as a transi-
tion layer instead. By contrast, according to the single-domain
approach, the flow structures in the vicinity of the interface are
resolved; the same also holds for the model of [21]. Despite the
conceptual simplicity that the two-domain approach offers, the
implementation of interface conditions for unsteady flows is quite
challenging, especially from the computational point of view. For
this reason, in our view, the single domain approach is better
adapted for numerical simulations of unsteady flows.

In numerous previous studies of thermal convection in domains
with superposed fluid and porous layers, it has been assumed that
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the fluid and the solid matrix are in thermal equilibrium.
Therefore, a single equation, describing the energy balance of the
mixture, is needed to determine the temperature inside the porous
region (one-equation model). Within this context, various authors
have studied the stability of thermal convection in superposed
fluid and porous layers; see, for example, [22–33] and references
therein. More recently, the authors of [34] presented Reynolds-av-
eraged simulations for statistically stationary turbulent heat trans-
fer in such domains.

However, there are applications, such as devices for rapid heat
transfer etc, where the thermal-equilibrium hypothesis might no
longer be valid. In this case, two energy equations are needed: one
for the fluid phase and a separate one for the solid matrix. This
increases significantly the complexity of the corresponding mathe-
matical models. Nonetheless, due to their growing importance in
technological applications, the study of convection in absence of
thermal equilibrium has attracted considerable interest in recent
years. Thus far, the bulk of the published literature has been devoted
to domains that are completely covered by a porous medium; for a
literature survey, see [13,14]. By comparison, there are few available
publications that examine flows in domains with superposed fluid
and porous layers. An influential contribution to this field is [35] in
which the authors provided a set of governing equations based on
volume-averaging and the two-domain approach and thermal
boundary conditions at the interface; see also [4]. Subsequently,
steady-state convection problems in domains partially covered by
porous media have been analyzed in [36–39]. Nonetheless, numer-
ical simulations of unsteady, developing flows in absence of thermal
equilibrium have yet to appear in the literature.

In this paper we develop a thermo-mechanical model for the
flows of interest, based on the one-domain approach. This choice
is motivated by the fact that, as mentioned above, this approach is
better adapted for the numerical study of unsteady flows. To this
extent, we adopt a mixture-theoretic formalism, according to
which both the fluid and the porous solid are treated as two
separate and identifiable continua that occupy the same space
and are in thermodynamic non-equilibrium with each other. As
such, each continuum constituent is endowed with its own set
of thermodynamic variables and is assigned its own set of balance
laws. Also, the porosity (fluid volume fraction) is introduced as a
field variable that measures the density of volume occupied by
the fluid. Then, constitutive relations for the interaction between
the two phases and for all dissipative phenomena occurring in
each phase are derived via exploitation of the constraints imposed
by the entropy-inequality axiom. It should be noted that the
modeling of porous-media flows based on mixture-theoretic
formalisms has a long history. Over the years, various models
have been developed by employing different theories of non-
equilibrium thermodynamics; see, for example, [16–20,15], and
references therein.

Our modeling, however, differentiates from earlier works in
several aspects. First, we follow a particular mixture-theoretic for-
malism, namely the one of [40], which is a generalization of the
classical theory of irreversible processes to immiscible mixtures
whose constituents are in thermal non-equilibrium. Second, the
proposed model treats both thermal non-equilibrium between
phases and heterogeneous reactions, while being valid for both
compressible and incompressible fluid flows. Third, the limiting
case of incompressible flows is derived via a formal asymptotic
expansion, commonly known as ‘‘low-Mach number approxima-
tion’’, instead of assuming a priori that the fluid’s thermodynamic
pressure or density are constant.

The low-Mach number approximation is valid for flows where
compressibility effects are negligible and is applicable to many
practical applications and natural phenomena. An important sim-
plification of this approximation is that the fluid momentum and

energy equations are decoupled. Also, the constitutive expressions
for interphasial mass exchange simplify considerably.

In this paper, we discuss in more detail the properties of the
low-Mach number approximation for the special but important
case of non-reacting flows (without interphasial mass exchange),
and we also elaborate on the issue of thermal condition for the por-
ous matrix at the interface. Finally, we present results from numer-
ical simulations of unsteady natural convection in a channel. The
objectives of this numerical study is to test the efficacy of the pro-
posed model and its numerical discretization for thermal convec-
tion and to gain insight on the effect of thermal non-equilibrium
between the fluid and the porous solid. To the best of our knowl-
edge, such simulations have not appeared in the literature yet.

The article is organized as follows. In Section 1 we present the
derivation of the thermo-mechanical model and in Section 2 we
derive its low-Mach number approximation. Then, in Section 3
we discuss the properties of the model for the case of non-reacting
flows. In Section 4 we describe the numerical method and other
numerical aspects of our simulations. Finally in Section 5, we pre-
sent and analyze the results of our numerical study of transient
thermal convection.

2. Derivation of the mathematical model

Let X � R3 be an open and bounded domain that contains both
porous and pure-fluid regions. The porosity distribution /ðx; tÞ is
introduced as a concentration parameter that measures the density
of volume occupied by the fluid. According to its axiomatic definition,
[41,42], /ðx; tÞ is a probability density function defined in X via the
Radon–Nikodym theorem and takes values in the interval ð0; 1�.

Next, let Xp � X be the union of the open sub-domains that are
covered by the porous material, Xp ¼ fx 2 X : /ðxÞ < 1g. In the
same manner, let Xf � X be the union of the sub-domains covered
by the pure fluid, Xf ¼ fx 2 X : /ðxÞ ¼ 1g. Therefore, X ¼ Xf [Xp.
Also, let SX denote the boundary between Xp and Xf . Since Xp is
an open subset of X, then along SX we have that /ðx 2 SX; tÞ ¼ 1.
In the case of a sharp interface between porous and pure-fluid
regions, SX coincides with the interface. In the case of a smooth
interface (with finite thickness), SX represents the end of the inter-
face at the side of the pure fluid.

The assumptions upon which our model is based are the
following.

(i) Each phase is modeled as a continuum thermodynamic
system.

(ii) The two thermodynamic continua are immiscible but
occupy the same space. In particular, they fill completely
the space that they occupy (saturation condition).

(iii) The two thermodynamic continua are open to each other
and at non-equilibrium.

(iv) The mass, momentum and energy exchanges between the
two continua are pure, i.e. their sum must vanish.

(v) The skeleton (or matrix) of the porous material is assumed
to be a rigid solid of zero velocity and constant mass density.
Also, the fluid is assumed to be simple and isotropic.

(vi) The postulate of phase separation holds. In other words,
irreversible phenomena associated with only one phase
do not depend on the variables of the other phase.

Since the two thermodynamic systems are open and at out of
equilibrium, they can interact with each other. These interactions
are in the form of mass, momentum, and energy exchanges, and are
denoted byM; f , and E, respectively. In particular, mass exchange
can occur due to heterogeneous reactions or phase change, while
momentum exchange occurs via the action of interphasial forces.
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