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a b s t r a c t

In this paper, a method based on the use of a fictitious Marangoni number is proposed for the simulation
of natural thermocapillary convection as an alternative to the traditional effective diffusivity approach.
The fundamental difference between these two methods is that the new method adopts convective mass
flows in simulating natural convection. Heat transfer in the natural convection simulation is calculated
through the mass transport. Therefore, empirical Nusselt numbers correlations required in the effective
diffusivity method are eliminated. This represents a clear advantage in the context of design studies
where flexibility in varying the geometry unconstrained by the availability of appropriate correlations
is highly desirable. The new method is demonstrated using a simple geometrical model. An analytical
expression of the fictitious Marangoni number associated with convection between vertical plates is
derived and a computational fluid dynamics (CFD) simulation is performed to study the efficacy of the
proposed method. The results show that the new method can approximate real natural convection quite
accurately and can be used to simulate the convective flow in complex, obstructed or finned structures
where the specific Nusselt correlation is not known.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection in enclosed cavities is of great importance in
many engineering and scientific applications such as energy trans-
fer, boilers, nuclear reactor systems, energy storage devices, etc. In
the design of such systems numerical simulation using computa-
tional fluid dynamics (CFD) and experimental testing of prototypes
are extensively used. However, these methods are not well suited
to activities such as parametric analysis due to their
time-consuming nature and high cost [1].

Natural convection analysis often involves complex simula-
tions. Such simulations entail a set of relaxation factors to converge
and no easy way to find the relaxation factors except through con-
tinuous trials demanding significant computational resources. This
frequently dissuades thermal analysts and designers from attempt-
ing 3D simulations. In order to overcome this problem, the tradi-
tional approach is to use an effective diffusivity term (effective
thermal conductivity) to convert effects of convection into pure
conduction [2,3]. The fluid within an enclosure behaves like a fluid
the thermal conductivity j of which is modified by an effective
thermal conductivity jeff as jeff ¼ j � Nu, with the Nusselt number
Nu being determined by an appropriate correlation. This provides a
challenge to engineers when they are designing a complex or novel

system. The engineers must have knowledge of the appropriate
Nusselt number correlation relationship for the specific geometry,
such as finned structures; however, these correlations are often not
available. This then motivates us to find an alternative approach
that does not require knowledge of Nusselt number correlations.

In this paper, an alternative approach is proposed for natural
convection simulations in which the momentum equation is modi-
fied and then the mass flow represented by using a fictitious
Marangoni term in the stress tensor inducing thermocapillary cur-
rents. The heat transfer is then the result of this mass flow. In the
next section the theoretical background behind the proposed
approach will be presented. Although prior knowledge of
Marangoni convection is not essential to understand the material
presented in the next section, the interested reader is referred to
the text by Kuhlmann and Rath [4] for further information about
fundamental Marangoni theory and to recent research outputs
[5–14] and the book by Lappa [15] to obtain an overview of ther-
mal convection and the state of the art.

2. Theoretical background

2.1. The fictitious Marangoni approach (FMA)

Let us start by considering the Navier–Stokes equation, which
has, in presence of a gravitational field, the following tensorial
form
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where v is the velocity, p is the static pressure, r0ik is the viscous
stress tensor (described below), and gi is the gravitational body
force per unit volume.

The viscous stress tensor is given by
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where g is the dynamic viscosity and dik is the Kronecker delta.
Now let us derive the equation describing the natural convec-

tion. For the sake of simplicity, we will assume the fluid is incom-
pressible. This assumption implies that the variation of density due
to variation in pressure may be neglected. We can express the vari-
ations in temperature, density and pressure as functions of small
variations dT, dq and dp, respectively. This is the well-known
Boussinesq approximation (for buoyancy). Introducing this into
the Navier-Stokes equation (Eq. (1)), results in the following
expression [16]:
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where, with our assumption that the fluid is incompressible, i.e.
div � u ¼ 0, the stress tensor is simplified as

r0ik ¼ g
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Let us now consider the situation of a boundary condition that must
be satisfied at the boundary between the fluid and the walls, when
surface-tension forces are taken into account. If we assume that the
surface-tension coefficient c is not constant over the surface (in our
case because of temperature variation), then a force tangential to
the surface is developed @c

@xi
, and the stress tensor then becomes
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Now, our objective in this paper is to define a fictitious
surface-tension gradient, @c=@xi, which emulates the buoyancy
potential, bdTgi. Although there are several ways in which to do this,

perhaps the following analogy is easiest in applying this approach
to cases involving plates and finned structures.

In laminar, fully developed, two-dimensional (2D) flow
between parallel plates (see Fig. 1), the pressure drop is given by
[16]
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where s is the distance between the plates and the stress tensor is
given by
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or, considering the velocity profile between the parallel plates [17],
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where w is the mass flow rate per unit of width.
For natural convection flow, this flow resistance is balanced by

the buoyant potential [17] given by

Nomenclature

Ac fin base-area
C1 constant
cp specific heat capacity
D diffusion coefficient
gi gravitational acceleration
h channel or plate length
hf heat transfer coefficient
l plate width or fin length
m fin temperature profile parameter
Ma Marangoni number
n exponent
Nu Nusselt number
P fin perimeter
Ra Rayleigh number
s plate spacing
T temperature
v velocity
w mass flow per unit width
z length coordinate

Greek symbols
a thermal diffusivity
b thermal expansion coefficient
c� fictitious surface tension
j thermal conductivity
q density
r surface tension
g dynamic viscosity
gfin fin efficiency

Subscripts
a ambient value
c cold
eff effective value
f fluid
h hot
i; j; k coordinate directions
s surface

Fig. 1. Simulated cavity model with a bottom wall temperature of Th , a top wall
temperature of Tc and adiabatic side walls.

324 F.J. Arias, G.T. Parks / International Journal of Heat and Mass Transfer 88 (2015) 323–329



Download English Version:

https://daneshyari.com/en/article/657026

Download Persian Version:

https://daneshyari.com/article/657026

Daneshyari.com

https://daneshyari.com/en/article/657026
https://daneshyari.com/article/657026
https://daneshyari.com

