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a b s t r a c t

This computational study investigates nonlinear dynamics of unstable convection in a 3D toroidal shaped
thermal convection loop (i.e., thermosyphon) with heat flux boundary conditions; results are compared
to prior 2D simulations. The lower half of the thermosyphon is subjected to a positive heat flux into the
system while the upper half is cooled by an equal-but-opposite heat flux out of the system. Water is
employed as the working fluid with fully temperature dependent thermophysical properties and the sys-
tem of governing equations is solved using a finite volume method. Numerical simulations are performed
for varying magnitudes of heat flux ð1:0 W=m2

6 q00 6 1:0� 104 W=m2Þ to yield Rayleigh numbers (i.e.,
buoyant forcing) ranging from 2:83� 104

6 Ra 6 2:83� 108. Delineation of multiple convective flow
regimes is achieved through evolution of the bulk-mass-flow time-series and the trajectory of the mass
flow attractor. Simulation results demonstrate that multiple regimes are possible and include: (1) con-
duction, (2) damped, stable convection that asymptotes to steady-state, (3) unstable, Lorenz-like chaotic
convection with flow reversals, and (4) high Rayleigh, aperiodic stable convection without flow reversals.
For the Rayleigh numbers considered, it is observed that certain flow regimes are not accessible in
toroidal simulations owing to the constraints of additional surface boundaries in a 3D system. The RMS
of mass flow rate, power spectra of oscillatory behavior, dominant oscillatory frequency, and residence
time are also described as a function of the buoyant forcing in the system.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Natural convection and buoyancy driven dynamic systems exist
over a wide range of length scales and are of notable import to the
scientific, mathematic, and engineering communities. On a geo-
physical scale, counter-rotating convection cells within the
asthenospheric layer of the Earth’s upper mantle are composed of
ductile rock (owing to the extremely high temperatures and pres-
sures) and produce much of the plate tectonic behavior such as
the formation of large scale ridges, trenches, and volcanic activity
[1]. On a regional scale, Hadley Cells in the planetary atmosphere
are intimately related to the behavior of the jet stream via Rossby
waves and aid to explain large scale motions of the Earth’s
atmosphere as well as weather pattern dynamics as quantified by

ensemble averages of teleconnection indices [2]. For example, the
North Atlantic Oscillation Index ðNAOÞ, which pertains to the
North–East US weather, is commonly used by meteorologists to
quantify the oscillatory and chaotic fluctuations of the jet stream
in an attempt to improve the accuracy of medium range
(10–30 days) weather forecasting. On a local scale, convective
thunderstorms (derechos, downbursts, and straight-line wind-
storms), micro-climates, and land/sea breezes are all the result of
unstable, differential heating in a thermal–fluid system [3–5].
Examples of natural convection employed in engineered systems
include: (1) solar water heaters, (2) nuclear reactors, (3) gas turbine
blade cooling, and (4) roads and railways that pass over permafrost,
among many others [6–8]. The buoyant forces resulting from
thermal gradients within these fluid systems can give rise to
complex mass flow circulations and aperiodic behavior.

The nonlinear dynamics of unstable convection have been stud-
ied by Lorenz [9] in his 1963 differential equation model for natural
convection in Rayleigh–Bénard convection cells. This work has been
studied extensively in an attempt to improve mathematical models
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of the earth’s atmosphere. Physical and/or numerical models such
as thermal convection loops, or ‘thermosyphons’, are a simplified
geometry that represents a viable tool for studying the behavior
of natural convection cells [10]. Thermosyphons are a useful con-
struct for performing scientific studies as they limit convection to
a single, large cell and thus provide the simplest physical model
which allows for examination of the various flow regimes that
occur in convection cells.

Thermosyphons are fluid systems in which convective flow is
induced via buoyant forces that occur when sufficiently large
unstable temperature gradients exist (i.e., heating from the bottom
and cooling from the top). The fluid circulates within a closed, cir-
cular tube (e.g., torus) that is oriented vertically in space with the
direction of gravity. The resulting thermal gradient may be accom-
modated by conduction, or, if the gradient is sufficiently large,
buoyancy driven convection. Thermosyphons exhibit many of the
typical nonlinear system dynamical effects, particularly, natural
convection flow regimes wherein instabilities may grow large and
significantly alter the flow behavior within the thermosyphon.
The various flow regimes are typically delineated as (1) conduction
and/or quasi-conduction, (2) asymptotic, stable convection with
unidirectional flow, (3) unstable, Lorenz-like chaotic convection
with flow reversals, and (4) high Rayleigh number, aperiodic stable,
convection without flow reversals.

Comprehensive review articles written by Yang [11], Raithby
and Hollands [12], and Jaluria [13] discuss several important
closed-loop thermosyphon problems in various branches of engi-
neering, geophysics, environmental sciences. The review articles
[6–13] contain a wealth of literature on theoretical and experimen-
tal studies of this simple system, which exhibits typical nonlinear
convective effects. Early thermosyphon studies employed 1D mod-
els in order to study flow behavior in a thermosyphon with the
assumption that all governing parameters are uniform over any
given cross section at any moment in time [14,15]. Periodic oscilla-
tions were found analytically by Keller [14] in a 1D model consist-
ing of a fluid-filled tube bent into a rectangular shape and standing
in a vertical plane. Gorman et al. [16] presented a quantitative com-
parison of the flow in a thermal convection loop with the nonlinear
dynamics of the Lorenz model. Here the system was heated with
constant flux over the bottom half and cooled isothermally over
the top half. The boundaries of different flow regimes were deter-
mined experimentally and the characteristics of chaotic flow
regimes were discussed. They also derive a relationship between
the parameters of the Lorenz model and the experimental parame-
ters of the fluid and loop. Several flow stability studies have been
performed by Vijayan et al. [17] and Jiang et al. [18,19] while
Desrayaud et al. [20] completed a numerical investigation of

unsteady, laminar natural convection in a 2D convection loop
maintained at a constant heat flux over the bottom half and cooled
at a constant temperature over the top half. For a particular range of
forcing (i.e., Rayleigh number), it has been observed that the bulk
fluid motion in a thermosyphon is chaotic and undergoes flow
reversals. Creveling et al. [21] proposed a positive feedback
mechanism in order to explain these flow reversals in a
thermosyphon.

Within the extensive body of literature pertaining to ther-
mosyphons, only a minimal subset of studies have examined the
spatiotemporal behavior of the flow-field dynamics within a ther-
mosyphon. The thermal structure of the flow and velocity-field
where characterized in time by Ridouane et al. [22,23] where they
examine thermosyphons with isothermal boundary conditions in
2D and 3D geometries. It was found that for 2D thermosyphons,
chaotic flow regimes and the associated flow reversals occur for
Rayleigh numbers 9:5� 104 < Ra < 4:0� 105. However, in the 3D
isothermal work [23], flow reversals where not observed for
Rayleigh numbers ranging from 103 < Ra < 2:3� 107 with isother-
mal boundaries. Ridouane et al. suggest that 3D flow structures
increase flow resistance and thus damp the flow instability mecha-
nism responsible for bulk flow reversals observed in 2D loops.

The basis for exploring the heat flux boundary condition in 3D is
driven from multiple fronts. First, the flux boundary provides a bet-
ter correlation with actual laboratory experiments. And second is
the fact that flow reversals were not found in 3D isothermal simu-
lations [23] but are known to occur in experiments with heat flux
boundary conditions. In an earlier works by Louisos et al. [24,25]
a chaotic flow regime with flow reversals was found in 2D simula-
tions with heat flux boundary conditions. We thus seek to extend
this prior work by examining a 3D thermosyphon with toroidal
geometry and heat flux boundaries.

The present study considers 3D toroidal thermosyphon simula-
tions with iso-heat flux boundaries: heating on the bottom-half of
the loop ðþq00Þ and an equal but opposite iso-heat flux cooling on
the top half ð�q00Þ over the range of Rayleigh numbers from
2:83� 104 to 2:83� 108. Here we examine both the temporal
evolution and the RMS value of the mass flow rate in the
thermosyphon. Particular focus is placed on characterizing flow
reversals as defined by the transition from clockwise ðCWÞ to
counter-clockwise ðCCWÞ flow around the convection loop (or vice
versa). The trajectory of the thermosyphon mass flow rate solution
is plotted on an attractor diagram and the fixed convective equilib-
rium solutions are shown as ‘orbital centers’ for both decaying,
periodic, and chaotic flow regimes. A frequency analysis is per-
formed in order to examine the power spectra of the system and

Nomenclature

CCW counter-clockwise
CW clockwise
cp specific heat capacity at constant pressure kJ

kg�K

� �
e specific internal energy ðkJÞ
g gravitational acceleration ðm=s2Þ
h convection coefficient W

m�K
� �

I identity matrix
k thermal conductivity W

m�K
� �

L characteristic length scale ðmÞ
_m mass flow rate ðkg=sÞ

p pressure (Pa)
q00 heat flux ð�W=m2Þ

Ra Rayleigh no.
T static temperature (K)
t time (s)
V velocity vector (m/s)
a thermal diffusivity (m2/s)
b thermal expansion coefficient (1/K)
h azimuth coordinate (radians)
s viscous stress tensor (Pa)
m kinematic viscosity (m2/s)
l dynamic viscosity kg

m2 �s

� �
q density ðkg=m3Þ
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