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a b s t r a c t

An analytical solution of the phase change problem, known as the Stefan or Moving Boundary Problem, in
a PCM layer (phase change materials) subject to boundary conditions that are variable in time, is pre-
sented, in steady periodic regime. The two-phase Stefan Problem is resolved considering periodic bound-
ary conditions of temperature or of heat flux, or even mixed conditions.

This phenomenon is present in air-conditioned buildings, the walls of which use PCM layers to reduce
thermal loads and energy requirements to be compensated by the plant.

The resolution method used is one in which phasors allow the transformation of partial differential
equations, describing conduction in the solid and liquid phase, into ordinary differential equations; fur-
thermore the phasors allow transformation of the thermal balance equation at the bi-phase interface into
algebraic equations. The Moving Boundary Problem is then reduced to a system of algebraic equations,
the solution of which provides the position in time of the bi-phase interface and the thermal field of
the layer. The solution obtained provides for different thermodynamic configurations that the layer
can assume and makes the position of the bi-phase interface and the thermal field depend on the
Fourier number and on the Stefan number calculated in the solid phase and in the liquid phase.

In the case of two boundary conditions represented by a single sinusoidal oscillation, a general analysis,
addressed in different thermodynamic configurations obtained by varying the Fourier and Stefan number,
shows the calculation procedure of the steady and of the oscillating component of the position of the
bi-phase interface, of the temperature field and of the heat flux field.

In addition, we considered the particular case of a PCM layer with an oscillating temperature boundary
condition on one face and a constant temperature on the other face.

The analytical procedure was also used for an analysis dedicated to the thermal behaviour of Glauber’s
salt subject to independent multi harmonic boundary conditions. This salt hydrate is one of the most
studied, having a high latent fusion heat and a melting temperature that is suited for use in the walls
of buildings.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Among the technologies available to improve thermal perfor-
mance of the walls in air-conditioned buildings, the use of PCM
has attracted notable attention. These materials, due to the variabil-
ity of the boundary conditions, undergo phase changes with storage
of latent heat in the wall and successive releasing, and consequent
modification of the thermal exchanges between the air-conditioned
environment and the outdoor environment. Storage of latent heat is
preferable to the storage of sensible heat due to its isothermal
properties and the high energetic contribution.

In the winter heating of the environments, a part of the energy
lost through an opaque element of the external envelope is used
for the solid–liquid phase change of the PCM layer. This process
gives rise to a storage of latent heat in the wall, which, in part,
can be returned to the internal environment if the opposite liq-
uid–solid phase change occurs subsequently. In this way, the
energy lost from the environment to the outside is reduced.

In summer cooling, the presence of a PCM layer drastically
reduces the solar loads entering through opaque walls; the energy
stored in the wall is returned in part to the outdoor environment
during nocturnal hours, prevalently following radiant exchange
with the sky. The advantage is the net reduction in the loads to
be removed by the air-conditioning plant, the time lag of the enter-
ing heat flux and the attenuation of temperature oscillations.
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If the internal walls are considered, the presence of a PCM layer
increases thermal storage with a consequent reduction of internal
air temperature oscillations.

In order for the benefits to be continuous over time, the vari-
ability of the boundary conditions must be such as to cause a
fusion cycle in the layer and successive solidification in a period
of 24 h.

This paper addresses the problem of heat transfer in a PCM
layer subject to phase changes due to the variability of the
loadings, which act on the two faces delimiting it. The external
loadings, which are variable in time, are the air temperature, solar
irradiance, and infrared radiation from the sky. While internal
loadings are solar radiation entering through the glazed surfaces,
internal loads and the power supplied by the plant. Since the
obtainable benefits in terms of energy are linked to the realisation
of continuous phase change cycles, and considering that the load-
ings have trends that can always be expressed through the sum of
periodic functions, the analysis was conducted considering the
steady periodic thermal regime. This regime is representative of
the thermal behaviour of the building walls, especially in summer
and is used for the dynamic thermal characterisation of building
walls in EN ISO 13786 [1] and in [2]. The technical Standard uses
harmonic analysis in a steady periodic regime for the dynamic
characterization of finite monophase layers of building compo-
nents with only sensible thermal storage. The boundary conditions
on the two faces delimiting the wall are temperature or heat flux
that vary sinusoidally.

In a PCM layer subject to phase changes, the transfer regime of
the heat flux is modified due to the discontinuity of the heat flux at
the bi-phase interface due to the latent heat storage. This phe-
nomenon determines variability in time of the position of the

bi-phase interface in the layer and the modification of the thick-
ness of both the solid phase and the liquid phase. The thermal field
in the two phases, which present different thermophysical proper-
ties, is a function of the position of the bi-phase interface that is
variable in time, as well as the relative boundary conditions.

From a historical survey, several authors have given exact ana-
lytical solutions only in monodimensional semi-infinite or infinite
domains with simple initial and boundary conditions. However,
they neglected convection in the liquid phase and the variation
of the thermophysical properties in the two phases. The Stefan
Problem is divided into a one-phase Stefan Problem and a
two-phase Stefan Problem. The term ‘one-phase’ designates one
of the phases being active, the other phase staying at its melting
temperature, while the term ‘two phase’ indicates that the thermal
field varies in both phases. In particular, the following one-phase
problems have been solved, by using similarity variable [3–8]:
(1) conduction in a semi-infinite phase change material with a con-
stant temperature greater than zero at the initial time. In the sub-
sequent instants a constant temperature less than zero at abscissa
x = 0 causes a solidification which occurs at a temperature equal to
zero; (2) conduction in an infinite phase change material with, at
the initial time, a liquid phase placed in the abscissae 0 < x < +1
at a temperature greater than zero and the solid phase placed in
the abscissae �1 < x < 0 at a temperature less than zero.
Analogously to the first problem, a constant temperature less than
zero at abscissa x = 0 causes a solidification which occurs at a tem-
perature equal to zero. In these Stefan Problems the liquid phase
stays at melting temperature during the solidification process.

The extension of the one-phase problem solution to the
two-phase problem is known as Neumann’s solution [3–8].
Such a Moving Boundary Problem concerns conduction in a

Nomenclature

(a) portion of the layer in phase a
(b) portion of the layer in phase b
c specific heat capacity [J/(kg K)]
F heat flux [W/m2]
Fo Fourier number [–]
H latent heat of fusion [J/kg]
k harmonic order [–]
L thickness of the PCM layer [m]
n harmonic number [–]
P period of oscillation [s]
Ste Stefan number [–]
t time [s]
T temperature [K]
t⁄ a particular instant [s]
x spatial Cartesian coordinates [m]
X position of the bi-phase interface [m]

Greek symbols
a thermal diffusivity [m2/s]
c propagation constant [m�1]
Dt finite difference time step [s]
DX finite difference of the variation of the position of the

bi-phase interface [m]
f argument of the oscillating component of the position of

bi-phase interface [rad]
# generic component of the temperature Fourier series

expansion [K]
#p, #r constants of integration [K]
k thermal conductivity [W/(m K)]
q density [kg/m3]
1 argument of the abscissa in motion [rad]

t velocity of the bi-phase interface [m/s]
u argument of the oscillating component of the tempera-

ture [rad]
/ generic component of the heat flux Fourier series

expansion [W/m2]
v generic component of the position of bi-phase interface

Fourier series expansion [m]
w argument of the oscillating component of the heat flux

[rad]
x angular frequency [rad/s]

Subscripts
1 face 1
2 face 2
a phase a
a1 oscillation on face 1 in a-phase
anal analytical
b phase b
b2 oscillation on face 2 in b-phase
H latent heat stored per unit time
k kth harmonic
M melting
num numerical

Symbols
– mean value
� oscillating value in the time domain
^ oscillating value in the complex domain
| | amplitude of an oscillating value
arg argument of an oscillating value
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