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a b s t r a c t

Thermal radiation within enclosures are widely present in applications such as furnaces, satellites and
spacecrafts. Modern demands of quality and efficiency in the design of these structures require better
tools than the traditional ‘‘trial-and-error’’ method. In that sense, topology optimization method allows
a systemized distribution of material inside a design domain, such that a prescribed objective function
is minimized, subjected to design constraints. It represents a robust and reliable option to design the inte-
rior of enclosures. Thus, in this work, a topology optimization design method is presented for the distri-
bution of boundary reflectivities within diffuse-gray enclosures. The modeling of radiative heat transfer
in a nonparticipating media is solved by the net-radiation method and the optimization algorithm used in
this work is the method of moving asymptotes (MMA). The cases considered are the distribution of ther-
mal radiation reflective material on flat surfaces in order to maximize or minimize the sum of net heat
flux and to minimize the sum of the temperatures in a specified region of the design domain.
Numerical examples are presented to illustrate the proposed design method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Thermal radiation within enclosures are widely present in
applications such as furnaces, satellites and spacecrafts, and the
theory that describes this phenomenon has been consistently dis-
cussed in literature [1]. The modern demands of quality and effi-
ciency in the design of these structures require a better tool than
the traditional ‘‘trial-and-error’’ method.

The problem of designing radiant enclosures has been exten-
sively addressed in literature by means of inverse methods. From
this approach, an inverse design problem that is solved in its
ill-posed explicit form can have the ill-conditioned portion of that
problem removed or improved by methods such as Monte Carlo,
Thikonov method, conjugate gradient regularization, among others
[2,3]. In this sense, in [4,5], the determination of temperature pro-
files and wall properties are considered, and in [6,7] the estimation
of thermal and radiative properties of advanced materials by using
regularization methods are compared with experimental data.

Currently, more attention have been paid on optimization
design techniques. For this method, a design problem is implicitly
defined as the minimization of an objective function subjected to
some constraints and then it is iteratively solved through mathe-
matical tools. By using optimization, the determination of heater
temperatures of an industrial radiative oven such that the surface

of a continuously moving load achieves a prescribed temperature
profile is addressed in [8]. In [9], the steepest descent, Newton
and quasi-Newton methods are applied to optimize the geometry
of a 2-D radiative enclosure with diffuse walls, and in [10] opti-
mization approaches are compared with results obtained by using
regularization methods in the determination of heater settings.

Under this perspective, topology optimization represents a
robust and reliable option to design the interior of enclosures, once
it allows a systemized distribution of reflective material over the
design domain, such that a prescribed objective function is mini-
mized, subjected to design constraints. Widely used for structural
purposes, as in the classical problem of compliance minimization
[11–13], the method of topology optimization can also be applied
to solve thermal problems. One of the first studies focused exclu-
sively in thermal design of a given structure was published by
[14]. In that study, a topology optimization for a heat conduction
problem of minimum resistance between input and output points
is presented. The application of that method can also be encoun-
tered for the design of surfaces subjected to thermal loads of con-
vection. In that sense, Iga et al. [15] presents a work where the
investigation of the influence of design-dependent effects upon
heat convection is addressed. However, the bibliography that
reports the application of topology optimization in radiation prob-
lems is scarce. Among the very few publications on that issue, it is
possible to identify the work from [16], which considered the
treatment of radiation as a nonlinear convective boundary condi-
tion in the design of micro-cooling fins.
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The topology optimization approach presented in this work
makes possible the distribution of reflective material in the interior
of diffuse-gray enclosures with transparent media in order to either
maximize or minimize the net heat flux summation or minimize
the temperature summation in a specified area of that inner
domain, which is subjected to boundary conditions of prescribed
temperatures and net heat fluxes. Such requirements are constantly
found in the layout design of various types of modern enclosures.

This paper is organized as follows: in Section 2, the analytical
governing equations of the radiative heat transfer within
gray-diffuse vacuum enclosures is presented. In Section 3, the
numerical solution of the problem by using the net-radiation
method is described. In Section 4, the topology optimization for-
mulation, including the definition of the objective function and
its derivatives, is provided. In Section 5, numerical examples of
the application of the technique are shown. Finally, in Section 6,
some conclusions are inferred.

2. Governing equations

Modelling thermal behaviour of surfaces within enclosures in
predominance of radiative heat transfer consists, in this work, in
calculating three basic quantities: radiosity, temperature, and net
heat flux. The proper determination of these measures is essential
for the application of the systematical reflectivity material distri-
bution method presented.

Among several approaches available to model radiative heat
transfer within enclosures [1], the approach assumed in this work
considers a vacuum enclosure, where surfaces are assumed to be
isothermal, opaque, diffuse, grey and with uniform radiosity. An
accurate determination of radiation under such conditions
depends on the precise calculation of view factors, as noticed by
[17]. Therefore, these factors, that represent the percentage of radi-
ation that leaves surface i and reaches a surface j, are determined
through the contour double integral formula [18]:

Fij ¼
1

2pAi

I
Ci

I
Cj

½lnðrijÞdxidxj þ lnðrijÞdyidyj þ lnðrijÞdzidzj� ð1Þ

where Ci and Cj are contours of boundary areas Ai and Aj; rij is the
distance between two line elements on each contour and dx;dy,
and dz correspond to differential lengths of those line elements.

Considering boundary conditions of prescribed temperature
and net heat flux, radiosity over each surface of an enclosure can
be directly calculated. Thus, for surfaces with prescribed tempera-
ture, radiosities are calculated as [1]:

Ji ¼ eirT4
i þ 1� eið Þ

XN

j¼1

FijJj ð2Þ

where Ti is the known temperature, ei is the emissivity, r is the
Stefan–Boltzmann constant (r ¼ 5:67� 10�8), and N is the total
number of surfaces that build the enclosure. For surfaces with pre-
scribed net heat flux, radiosities are calculated as follow [1]:

Ji ¼
Qi

Ai
þ Gi ¼

Q i

Ai
þ
XN

j¼1

FijJj ð3Þ

where Qi is the known net heat rate of surface i. Eq. (3) is of a particular
interest in this work, once it makes possible to write net heat flux as:

qi ¼
Q i

Ai
¼ Ji �

XN

j¼1

FijJj ð4Þ

Finally, unknown temperatures and net heat fluxes over sur-
faces can be calculated through the net-radiation method, which
organizes these measures in a system of N equations, as shown
below [1]:

XN

j¼1

dij

ej
� Fij

1� ej

ej

� �� �
Q j

Aj
¼
XN

j¼1

Fijr T4
i � T4

j

� �
ð5Þ

where dij is the Kronecker Delta.

3. Matricial form of net-radiation method

The matricial form of net-radiation method for the calculation
of radiative heat transfer in diffuse-gray vacuum enclosures fol-
lows the ideas presented in Section 2. Therefore, for an enclosure
subjected to boundary conditions of temperature and net heat flux,
radiosities are defined similarly as done by [19]:

KRJ ¼ E ð6Þ

where KR is the radiation matrix, J the radiosities vector and E the
emissions vector. The essential difference between this work and
[19] work consists in the approach used to assemble KR and E which
is divided in two types, as described in Section 2. Thus, for radiative
surfaces with prescribed temperature:

KRij
¼

dij � 1� ej
� 	

Fij

ej
ð7Þ

Ei ¼ eirT4
i ð8Þ

and for radiative surfaces with prescribed net heat flux:

KRij
¼ dij � Fij ð9Þ

Ei ¼ qi ð10Þ

A Gauss quadrature approach is adopted to numerically deter-
mine view factors Fij. Over line contours that bound enclosures
interior surfaces, the below formulation is applied [20]:

Fij ¼
1

2pAi

XNi

eli¼1

XNgp

pi¼1

Wpi
Jeli

XNj

elj¼1

XNgp

pj¼1

Wpj
Jelj

ln rðzpi
; zpj
Þ

h i
ŝi :̂sj ð11Þ

where Ni and Nj represent the amount of segments in which the
contours of radiative surface i and j are divided, Wpi

and Wpj
are

the weights for the numerical integration, Jeli
and Jelj

are the

Jacobians calculated in the radiative surfaces eli and elj; r refers to
the distance between the coordinates of the Gauss points zpi

and
zpj

and ŝi :̂sj is the scalar product between the versors that guide
the parameterization of the contours Ci and Cj. The view factor
value Fij is organized into a matrix F, so that the sum of its lines
is approximately one.

After the determination of radiosities, it is possible to calculate
net heat fluxes as suggested by Eq. (4):

q ¼ J� FJ or q ¼ ðI� FÞJ ð12Þ

where I is an identity matrix. For determination of unknown net
heat fluxes and temperatures, the net-radiation method can be
defined in a matricial form as [21]:

f I� Fð Þ I� I� diag eð Þð ÞF½ ��1diag eð ÞrgT̂ ¼ q ð13Þ

where diag eð Þ is a diagonal matrix for emissivities of inner struc-

tures, q is a vector of net heat fluxes and T̂ is given by:

T̂ ¼
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..

.
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Eq. (13) can be rewritten as follow:
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