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a b s t r a c t

This paper investigates some numerical methods for solving the non-local Allen–Cahn equation with a
space–time dependent Lagrange multiplier. Several types of methods, including the Crank–Nicolson finite
difference method, the finite difference operator splitting method, and the Fourier spectral operator split-
ting method are proposed respectively. Comparisons are made among these methods in terms of accu-
racy and computational efficiency for solving different types of problems. Numerical results show that
the Fourier spectral operator splitting method is very efficient because of its spectral accuracy in space,
especially for simulation of long time dynamics.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Allen–Cahn equation was introduced in [1] to model phase
transitions in iron alloys. It has been widely applied to various
problems, such as crystal growth [2], image analysis [3,4] and
phase separation [5], etc. Compared to large amount of studies
for the classical Allen–Cahn equation [6–9], there are few numeri-
cal results on non-local Allen–Cahn equation. In 1992, Rubinstein
and Sternberg [10] first proposed non-local Allen–Cahn equation,
which is related to the mean-curvature flow with the constraint
of constant volume enclosed by the evolving curve.

In this paper, we focus on the initial-boundary value problem
for the non-local Allen–Cahn equation,

@uðx;tÞ
@t ¼ Duðx; tÞ � 1

�2 ½f ðuÞ � bðu; tÞ�; ðx; tÞ 2 X� ð0; T�;
ruðxÞ � nX ¼ 0; x 2 @X;
uðx;0Þ ¼ u0ðx; yÞ; x 2 X:

8><
>: ð1Þ

Here X; T and n denote a bounded domain, finite time and the unit
outer normal vector on the domain boundary, respectively. The
small parameter � is related to the thickness of the interface layer

which can develop in parts of the solution with steep gradient.

The function f ðuÞ ¼ F 0ðuÞ and FðuÞ ¼ 1
4 ðu2 � 1Þ2 is a double-well

potential with equal well-depth, taking its global minimum value
at u ¼ �1. In other words, the two stable zeros of F 0ðuÞ have ‘bal-
anced’ stability. Consequently, the values �1 and 1 of the function
u prevail in X whereas the transition between them forms a thin
interface layer. This allows to understand u as an indicator of the
two components in a binary mixture. Meanwhile, we assume the
initial data ju0j 6 1, which follows from the maximum principe that
juj 6 1 in [11].

The term bðu; tÞ can be understood as a Lagrange multiplier for
the mass constraint

d
dt

Z
X

uðx; tÞdx ¼ 0: ð2Þ

There are mainly two kinds of representations for bðu; tÞ:

I : bðu; tÞ ¼ 1
jXj

Z
X

f ðuÞdx

and

II : bðu; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4FðuÞ

p
R

X

ffiffiffiffiffiffiffiffiffiffiffiffi
4FðuÞ

p
dx

Z
X

f ðuÞdx:

Both formulations have been widely used in [9,13–16]. Notice
that the mass conservation Eq. (2) is ensured by the Lagrange mul-
tiplier I or II in Eq. (1). However, since the Lagrange multiplier I is
only a function of time variable, Brassel and Bretin [12] concluded
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that Eq. (1) with the Lagrange multiplier II has better volume pre-
servation property than the case I, which also has been observed in
[13]. Recently, for the Allen–Cahn equation with the Lagrange mul-
tiplier II, Alfaro and Alifrangis [11] performed formal asymptotic
expansions of the solution, then proved the convergence to a weak
volume preserving motion by mean curvature via energy esti-
mates. Kim et al. [16] proposed an unconditionally stable numeri-
cal scheme for the same problem. However, their scheme is only
first-order accurate in time and second-order accurate in space.

The aim of this paper is to obtain a robust and efficient
approach for non-local Allen–Cahn equation (1) with the
Lagrange multiplier II using finite difference method and Fourier
spectral method in [17,18] respectively. First, we introduce a sec-
ond-order Crank–Nicolson (CN) nonlinear scheme. However, for
the nonlinear case, we need use an iterative method to solve the
resulting algebraic system. In order to overcome this drawback,
we further propose an operator splitting method. The non-local
Allen–Cahn equation was divided into three parts: linear equation,
nonlinear equation and nonlocal equation. The linear equation was
solved using a CN scheme, then the nonlinear part was solved ana-
lytically, last the nonlocal equation was solved explicitly. Note that
the previous methods are only second-order accuracy both in time
and space. In order to construct higher-order scheme, we further
investigate the performance of the Fourier spectral spatial dis-
cretization for the linear equation in the second method. To the
best of the authors’ knowledge, we have not found similar result
for the non-local Allen–Cahn equation in the literature. It is worth
to point out that in this paper we restrict our attention on the two-
dimensional (2D) case with Neumann boundary conditions, while
the developed techniques can be easily extended to the other
boundary conditions and the three-dimensional (3D) case.

The rest of the paper is organized as follows. In Section 2, three
numerical methods are introduced for non-local Allen–Cahn equa-
tion with the Lagrange multiplier II. Comparisons are made among
them in terms of accuracy and computational efficiency for solving
different types of problems in Section 3. Numerical results show
that the Fourier spectral operator splitting method is highly effi-
cient because of its spectral accuracy in space. Especially one 3D
test problem is presented to illustrate the availability of this
method. Finally, conclusions are drawn in Section 4.

2. Three numerical methods for non-local Allen–Cahn equation

In this section we consider three types of numerical methods
for the solution of Eq. (1) with the Lagrange multiplier II.

2.1. A CN finite difference scheme (M1)

We first introduce some notations which will be used through-
out the paper.

Define the domain X ¼ ða; bÞ2 is partitioned by

Xh ¼ ðxi; yjÞ ¼ aþ ðiþ 0:5Þh; bþ ðjþ 0:5Þhð Þ; 0 6 i; j 6 ðN � 1Þ
� �

;

where h ¼ ðb� aÞ=N is a uniform grid size. For m ¼ 0 to M, let
um

ij ¼ uðxi; yj;msÞ with the time step s ¼ T=M.
For the grid function u ¼ fuijj0 6 i; j 6 N � 1g on Xh, denote

½Dxu�ij ¼
ui�1;j � 2ui;j þ uiþ1;j

h2 ; ½Dyu�ij ¼
ui;j�1 � 2ui;j þ ui;jþ1

h2 :

Now, we approximate the Lagrange multiplier II in Eq. (1) by
the following formula:

bm
ij ¼

PN�1
i;j¼0f ðum

ij ÞPN�1
i;j¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Fðum

ij Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4Fðum
ij Þ

q
þOðh2Þ: ð3Þ

Combining the CN method, we get the following finite differ-
ence scheme for Eq. (1):

M1 :
umþ1

ij � um
ij

s

¼ 1
2
½Dxumþ1� þ ½Dyumþ1� þ ½Dxum� þ ½Dyum�
� �

ij

� 1
2e2 f ðumþ1

ij Þ þ f ðum
ij Þ

� �
þ 1

2e2 ðb
mþ1
ij þ bm

ij Þ

with boundary conditions

ðdxuÞm�1
2;j
¼ 0; ðdxuÞmN�1

2;j
¼ 0;

ðdyuÞmi;�1
2
¼ 0; ðdyuÞmi;N�1

2
¼ 0:

8<
: ð4Þ

It is well known that the CN scheme is an unconditionally
stable, implicit scheme with second-order accuracy in time
[21,22]. So method M1 in this paper is unconditionally stable.
The nonlinear term in scheme M1 is treated using the following
fixed point iteration: Define

umþ1;0
ij ¼

um
ij ; m ¼ 0;

2um
ij � um�1

ij ; m ¼ 1;

3um
ij � 3um�1

ij þ um�2
ij ; m > 1

8><
>:

and for l ¼ 1;2; . . . ; L, find umþ1;l
ij such that

umþ1;l
ij � um

ij

s
¼ 1

2
½Dxumþ1;l� þ ½Dyumþ1;l� þ ½Dxum� þ ½Dyum�
� �

ij

� 1
2e2 f ðumþ1;l�1

ij Þ þ f ðum
ij Þ

� �
þ 1

2e2 ðb
mþ1;l�1
ij þ bm

ij Þ;

where L is to be chosen. The computations are terminated when the
discrete residual in L2-norm or L1-norm is reduced by a factor of
10�10.

Moreover, the following result shows that scheme M1 con-
serves the mass balance, which overcomes the shortcomings of
the linearized finite difference scheme.

Theorem 2.1. Suppose Umþ1 is the solution of M1. Then we have the
following conservation of mass

XN�1

i;j¼0

Umþ1
ij ¼

XN�1

i;j¼0

Um
ij ; 0 6 m 6 M � 1:

Proof. It follows from scheme M1 that

PN�1
i;j¼0ðumþ1

ij �um
ij Þ

s
¼ 1

2

XN�1

i;j¼0

Dxumþ1þDyumþ1þDxumþDyum
� �

ij

� 1
2e2

XN�1

i;j¼0

f ðumþ1
ij Þþ f ðum

ij Þ
� �

þ 1
2e2

XN�1

i;j¼0

ðbmþ1
ij þbm

ij Þ:

Applying the boundary conditions (4), the above equation becomesPN�1
i;j¼0ðumþ1

ij �um
ij Þ

s
¼� 1

2e2

XN�1

i;j¼0

f ðumþ1
ij Þþ f ðum

ij Þ
� �

þ 1
2e2

XN�1

i;j¼0

ðbmþ1
ij þbm

ij Þ:

Combining with the specific form of bm
ij in (3), the desired result is

obtained. h

Notice that scheme M1 is nonlinear, so we need employ itera-
tion method to solve this system for each time step. Especially,
for the small � case, the transition layer will move slowly enough
such that a longer time is required to resolve the dynamics. In
order to reduce the amount of work, an operator splitting method
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