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a b s t r a c t

Hydrodynamic stability of a two-dimensional steady thermocapillary flow under weightlessness in a
high-Prandtl number liquid bridge is studied by means of three-dimensional numerical modeling for a
wide range of aspect ratios. We suggest an explanation of the findings of a series of microgravity experi-
ments on Marangoni convection in liquid bridges. Stability of the flow with heat transfer through the
interface, modeled by the classical Fourier law, is compared with the stability of the same system under
adiabatic conditions. Cooling the interface may significantly shift the threshold of hydrothermal instabil-
ity as soon as the Biot number deviates from zero. It may also affect the structure of the basic Marangoni
flow and the mode of the supercritical flow. We demonstrate that the heat loss has a destabilizing effect
for the aspect ratios (ratio of radius to height) below 2.4 (with the exception of a region between 1.6 and
1.8), and for the longer liquid bridges the prevailing effect is stabilizing. The heat transfer coefficient as a
function of the length of the liquid zone is theoretically calculated using a model of heat transport for
laminar forced convection. Comparison of the results of the modeling with the experimental data shows
that an incorrect assessment of the heat transfer may lead to wrong conclusions concerning both the
critical parameters of the flow and its structure.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A surface tension gradient induces tangential stresses, which
generate a large-scale interfacial motion, the so-called Marangoni
flow. A flow associated with an inhomogeneity of temperature is
called thermocapillary. These flows are omnipresent both in nature
and in many industrial applications, such as crystal growth, evap-
oration and welding. In a microgravity environment, Marangoni
flows play a dominant role in heat and mass transfer and become
very important for many space applications.

The geometry of interest in the present study is a non-isother-
mal cylindrical column, called liquid bridge (we will refer to also as
LB), which is a droplet of a liquid confined between two dif-
ferentially heated parallel flat disks. Liquid bridge is a model
representing half of a floating zone – a technological process of
crystal growth [1]. The thermocapillary flow is directed from the
hot boundary as for many fluids surface tension is a decreasing
function of temperature.

The steady two-dimensional toroidal flow is the stable mode of
convection at small values of the imposed temperature difference

DT between the disks. For any chosen geometry and parameter
space, there exists a critical value of temperature difference DTcr ,
above which an instability sets in [2] and gives rise to a number
of time-dependent three-dimensional flow regimes. In particular,
it may generate standing or traveling hydrothermal waves or lead
to temporally chaotic dynamics [3–5]. A traveling wave can propa-
gate in the azimuthal [6–8] or axial [9–11] direction and be
characterized by a single integer azimuthal wave mode m or a
combination thereof [12]. Varying the applied temperature differ-
ence and the properties of the liquid, most importantly the Prandtl
number (Pr ¼ m=k) [13,14] (defined as the ratio between the kine-
matic viscosity m and the thermal diffusivity k of the fluid), one can
study a variety of dynamical regimes.

Much efforts, both theoretical [15,16] and experimental
[2,17–19] were put into understanding the reason for the
onset of instability and measuring the critical parameters. The
critical temperature difference, or suitably defined the critical
thermocapillary Reynolds number Recr / DTcr , and the wave num-
ber m were calculated and measured for different liquids and
shapes of non-cylindrical interface. The first empirical correlation
for the determination of the azimuthal wave number realized near
the critical point m � 2:2

C (C is the height to radius of the liquid
bridge ratio), has been suggested by Preisser et al. [2]. The same
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relation but with slightly different coefficient 2.0 has been
obtained numerically for Pr < 7 assuming pure Marangoni convec-
tion [14]. Varying buoyancy forces results in a different value of the
coefficient [7].

Experimental evidences of the important role of the heat trans-
port through the liquid–gas interface in the stability of the thermo-
capillary flow in LB are being reported since the 1980s. In recent
years there has been much progress in the understanding of the role
of thermal conditions at liquid–gas interface in hydrodynamic sta-
bility of thermocapillary flows. Previous experimental and theoreti-
cal works, [18–26], have demonstrated that varying thermal
conditions at a liquid–gas interface (the rate of heat exchange and
ambient gas temperature) changes significantly both DTcr and struc-
ture of supercritical thermocapillary flow. Heat flux through inter-
face may provoke a change of mode m of the flow [25,26].

A series of microgravity experiments on the thermocapillary
convection in liquid bridges, called Marangoni Experiment in
Space (MEIS) [27,28] is being performed on board the
International Space Station. Among its main objectives were to
measure critical parameters, and to study their dependence on
thermal and kinematic conditions in surroundings.

The objectives of this work is to model the MEIS experiments
performed with 5 cSt silicone oil with Pr ¼ 67. To this end we
study the onset of hydrothermal instability of thermocapillary flow
by direct numerical simulations. For a liquid with such a large
value of Pr, the anticipated mode of instability is oscillatory.
Attempting to reproduce the experimental observations, we show
how important it is to correctly take into account heat transfer
between liquid and surrounding gas phases. Though the heat
transfer is modeled by a simplified theoretical approach, some
insight has been gained into its effect on the onset of instability.

2. Mathematical formulation

2.1. Governing equations and boundary conditions

We consider a differentialy heated cylindrical liquid column
held between two flat concentric disks, as sketched in Fig. 1. The
problem is examined under zero-gravity conditions with non-com-
pressible Newtonian fluid. The liquid bridge is of radius R ¼ 15 mm
and of variable height d. The liquid volume is equal to that of the
cylinder pR2d, therefore no deformation of the interface is antici-
pated. The liquid volume is 5% smaller than that of cylinder in
the MEIS experiment.

The temperatures Th and Tc (Th > Tc) are prescribed at the
upper and lower walls respectively thereby yielding a temperature
difference DT ¼ Th � Tc. Density q, surface tension r, and kine-
matic viscosity m of the liquid are taken as linear functions of the
temperature:

qðTÞ ¼ q0 � q0bðT � T0Þ; b ¼ � 1
q0

@q
@T

;

rðTÞ ¼ r0 � rTðT � T0Þ; rT ¼ �
@r
@T

;

mðTÞ ¼ m0 þ mTðT � T0Þ; mT ¼
@m
@T

:

where the reference temperature T0 ¼ Tc . Therefore, hereafter the
subscript index ‘‘0’’ denotes the value of a parameter at Tc .

The governing dimensionless Navier–Stokes, continuity and
energy equations for an incompressible fluid are:
@V
@t
þ ðV � rÞV ¼ �rP þ Rm � 2S�rHþ ð1þ RmHÞr2V; ð1Þ

r � V ¼ 0; ð2Þ
@H
@t
þ V � rH ¼ 1

Pr
r2H; ð3Þ

where V ¼ ðVr;Vu;VzÞ is velocity, H ¼ ðT � T0Þ=DT is temperature
and t is time, S is the strain rate tensor. The scales for time, velocity

and pressure are tch ¼ d2
=m0; Vch ¼ m0=d and Pch ¼ q0V2

ch. r is the
nabla operator. The scales for the radial and axial coordinates are
the radius R and the height d of the liquid column, respectively.

The governing equations are solved with the following bound-
ary conditions. At the rigid walls, no-slip and impermeability con-
ditions are imposed:

~Vðr;u; z ¼ 0; tÞ ¼ ~Vðr;u; z ¼ 1; tÞ ¼ 0;
Hðr;u; z ¼ 0; tÞ ¼ 0; Hðr;u; z ¼ 1; tÞ ¼ 1:

On the free surface at r ¼ 1:

Vr ¼ 0; 2½1þ RmH�S � er þ Re ez@z þ eu
1
r
@u

� �
H ¼ 0; ð4Þ

@H=@r ¼ �BiðHs �HambÞ; Bi ¼ R
kl

h; ð5Þ

where Bi is the Biot number, Hs ¼ ðTs � TcÞ=DT is the dimensionless
temperature at the interface, and Hamb ¼ ðTamb � TcÞ=DT is the
dimensionless temperature of gas phase near the interface (Ts and
Tamb are the dimensional temperatures of liquid at the interface
and of gas), h is the heat transfer coefficient, kl is the thermal con-
ductivity of the liquid. As seen from Eq. (5), the heat exchange
between the liquid and the gas is controlled by both the Biot num-
ber and the temperature profile in the gas.

The Biot number is a dimensionless parameter whose value
depends not only on the physical properties of the media but also
on features of the flow. Calculation of the heat transfer coefficient
and the choice of both Tamb and Bi will be discussed in Section 4.

Besides the Biot number and Hamb, the problem is completely
described by four non-dimensional parameters - the thermocapil-
lary Reynolds number, Re, the viscosity contrast, Rm, the Prandtl
number, and the aspect ratio C:

Re ¼ rTDTd
q0m2

0

; Rm ¼
mTDT
m0

; Pr ¼ m0

k0
; C ¼ d

R
;

where k is the thermal diffusivity.
The working fluid is 5 cSt silicone oil, which is a viscous weakly

evaporating substance. Its physical properties are listed in Table 1.

Fig. 1. Liquid bridge of radius R and height d with a straight interface. The dashed
closed lines with arrows schematically show the thermocapillary and return flows
(called basic Marangoni flow) and their directions in the bulk.
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