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a b s t r a c t

Counter-flow moving bed heat exchangers provide thermal and economic advantages over their co-cur-
rent counterparts. Recently, Laplace transforms were used to develop an analytical solution for the set of
coupled non-homogeneous equations governing co-current systems. In this work, an extension of the
analysis for counter-flow configurations is presented, revealing an important dependency on the capacity
ratio. The steady-state energy equations for a plate system are formulated and nondimensionalized, and
an analytical solution is presented. Temperature functions, and the associated transcendental equations,
for the solids and fluid are presented. The analytical expressions depend on the capacity ratio due to its
influence on the location and multiplicity of roots in the Laplace domain solution. Limiting cases are
explored and contrasted with expressions in the literature. A graphical analysis further depicts some
of the representative behaviors of the solution.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In an accompanying study [1], a novel analytical solution for the
steady non-homogeneous convection-conduction equations
describing energy transport in co-current parallel-plate moving
bed heat exchangers (MBHEs) is presented. These systems are
widely used in the energy, chemical and mining industries [2].
Applications range from nickel processing [3] to solar radiation
capture [4] and drying of woodchips [5]. Compared with fluidized
beds, MBHEs offer low investment cost, energy consumption, and
maintenance requirements [6]. In these systems, heat is conveyed
between a moving granular bed, consisting of solid particles and an
interstitial fluid, and a secondary heating or cooling fluid. Given
that flow arrangements can also be counter-current or cross-flow
in nature, the co-current analysis [1] must be extended to these
other configurations.

In the design of heat exchangers, counter-flow orientations can
yield higher log mean temperature differences [7]. Compared with
co-current configurations, it is possible for the outlet temperature
of the cold material to exceed that of the hot one [8]. However, per-
formance expectations are not intuitive. Under co-current condi-
tions, distance can be used to build equilibrium expectations,
since both materials move in the same direction. In counter-flow,
equivalent considerations are not as easily developed due to the

opposing orientation of flow. This is further complicated in
MBHEs by the non-homogeneous convective-conductive nature
of the governing equations. Nonetheless, given that increased tem-
perature gradients reduce area requirements and capital invest-
ments, an extension of the co-current analytical work [1] is in
order. This development will create a baseline for sizing and per-
formance analysis of counter-flow MBHEs.

This work presents a novel analytical solution for heat transfer in
counter-current plate MBHEs. This geometry is selected for simplic-
ity with respect to the solids flow behavior [9]. The coupled govern-
ing energy equations, with boundary conditions, are presented and
nondimensionalized. A Laplace transform methodology is applied
to obtain an analytical solution. Limiting conditions are considered
for the resulting expressions, and compared with those in the litera-
ture. Finally, a graphical analysis explores the consistency of the
solutions.

2. Model development

2.1. System description and assumptions

Consider particulate solids and a heating/cooling fluid moving
counter-currently inside the plate heat exchanger shown in
Fig. 1. Important system dimensions include: the plate half width
w, plate height H, and plate depth L. The solids move at a velocity
us, and enter at a temperature Tsi. The fluid moves with mass flow
rate _mf , and enters at a temperature tfi.
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The energy model assumptions are the following:

(1) Steady-state conditions.
(2) The moving solids and interstitial fluid are in local thermal

equilibrium and behave as a single component continuum
[10–14]. The range of validity of this assumption could be
studied subsequently by means of, for example, volume
averaging techniques [15]. Constraints associated with these
conditions could be developed following the work in other
porous media studies [16,17]. This description for the solids
has been experimentally validated by Sullivan and Sabersky
[13], under the necessary presence of a contact resistance at
the wall, accounting for variations in the granular structure
(see assumption #11).

(3) Thermo-physical properties of the solids (thermal conduc-
tivity ks, density qs, and specific heat capacity Cps) are ‘‘effec-
tive’’ and constant. As demonstrated by Quintard and
Whitaker [18], under local thermal equilibrium the magni-
tude of the effective properties is a function of various solids
and interstitial fluid properties. The total effective thermal
conductivity under this condition is a lumped combination
of conductivity properties, tortuosity and fluid dispersion
effects. Quantification of these effects in moving bed sys-
tems has yet to be explored in detail.

(4) Only lateral (y-direction) heat conduction occurs in the
solids. Axial conduction (x-direction) is negligible relative
to convection.

(5) Convection in the solids occurs in the axial x-direction only.

(6) Solids move at a constant velocity in the x-direction, in
agreement with experimental observations for flow over
smooth plates [9]. This assumption could be refined in sub-
sequent work, accounting for complex random lateral parti-
cle motion. Work of this kind would follow analogously to
that of Jackson [19] for fluidized systems.

(7) The temperature profile is symmetric at the midpoint or ori-
gin of the solids domain (i.e. y = 0).

(8) Energy transport in the fluid takes place via convection in
the x-direction only.

(9) The bulk fluid phase is considered to be well-mixed, and
heat exchange between the wall and the bulk is described
by a convective heat transfer coefficient. Seider–Tate style
correlations can be used to quantify this coefficient, as a
function of the flow regime, and equivalent hydraulic and
heated diameters [20].

(10) Thermo-physical properties of the fluid are constant (i.e.
density qf, and specific heat capacity Cpf).

(11) A contact resistance near the wall accommodates depar-
tures from the continuum assumption, as previous experi-
mental and analytical work [10,13,14,21,22] has
demonstrated complex mechanisms of energy transfer
between a heated surface and adjacent particles in a moving
bed. The magnitude of the resistance varies with exchanger
geometry, solids properties and operating conditions,
and would be obtained experimentally. For an order-
of-magnitude estimate, correlations are available in the
literature [10,13,14,21,22].

Nomenclature

a constant, =NTU � C
Ahx area of heat exchange

b constant, ¼
ffiffiffiffiffiffiffi

Bi
NTU

q
Bi Biot number, ¼ Uo �w

ks

C capacity ratio, ¼ _ms �Cps
_mf �Cpf

Cpf fluid specific heat capacity
Cps solids ‘‘effective’’ specific heat capacity
H plate height
i imaginary number, ¼

ffiffiffiffiffiffiffi
�1
p

j integer number
k number of multiple roots sn roots in w
ks solids ‘‘effective’’ thermal conductivity
L plate depth
_mf fluid mass flow rate
_ms solids mass flow rate

n integer number, positive
NTU Number of Transfer Units, ¼ Uo �Ahx

_ms �Cps
¼ Uo �H

qsuswCps

s Laplace domain axial variable
sn simple roots of expansion theorem denominator func-

tion w
Ts solids temperature function
Ts solids average temperature function
Tsi solids entrance temperature
Tso solids average outlet temperature
tf fluid temperature function
tfi fluid entrance temperature
tfo fluid outlet temperature
Uo overall heat transfer coefficient
us solids velocity
w plate half width
x axial spatial coordinate

x⁄ dimensionless axial spatial coordinate, ¼ x
H

y lateral spatial coordinate
y⁄ dimensionless lateral spatial coordinate, ¼ y

w

Greek letters
as solids effective thermal diffusivity
hf dimensionless fluid temperature function, ¼ tf�tfi

Tsi�tfi

hf,Bi?0 dimensionless fluid temperature function for a Biot
number of zero

hf,C?0 dimensionless fluid temperature function for a capacity
ratio of zero

hf0 dimensionless fluid exit temperature, x⁄ = 0
hf0,Bi?0 dimensionless fluid exit temperature for a Biot number

of zero
hf0,C?0 dimensionless fluid exit temperature for a capacity ratio

of zero
~hf Laplace domain dimensionless fluid temperature func-

tion
hs dimensionless solids temperature function, ¼ Ts�tfi

Tsi�tfi

hs,Bi ?0 dimensionless solids temperature function for a Biot
number of zero

hs,C? 0 dimensionless solids temperature function for a capac-
ity ratio of zero

~hs Laplace domain dimensionless solids temperature func-
tion

hs dimensionless solids average temperature function
kn nth eigenvalue
l positive eigenvalue for C > 1 case
qf fluid density
qs solids ‘‘effective’’ density
u expansion theorem numerator function
w expansion theorem denominator function
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